Química General
Un enfoque en competencias

Javier Cruz Guardado
María Elena Osuna Sánchez
Jesús Isabel Ortiz Robles
Guillermo Ávila García

Universidad Autónoma de Sinaloa | Dirección General de Escuelas Preparatorias
Química General

Un enfoque en competencias
Presentación

1. La química como ciencia.

1.1 Las visiones de la ciencia: pasado, presente y futuro

Problematización
Adquisición y organización de la información
Procesamiento de la información
Aplicación de la información
Autoevaluación

1.2 En la construcción de la química como ciencia: ¿cuáles cambios paradigmáticos consideras relevantes?

Problematización
Adquisición y organización de la información
Procesamiento de la información
Aplicación de la información
Autoevaluación

1.3 La aplicación de la ciencia y la tecnología: beneficios y riesgos para la sociedad y el ambiente

Problematización
Adquisición y organización de la información
Procesamiento de la información
Aplicación de la información
Autoevaluación

1.4 La química y su relación con las demás ciencias.

Problematización
Adquisición y organización de la información
Procesamiento de la información
Aplicación de la información
Autoevaluación

1.5 El objeto de estudio de la química y sus niveles de representación.
1.6 ¿Por qué modelamos en química? 62

Problematización ... 62
Adquisición y organización de la información 63
Procesamiento de la información 65
Aplicación de la información ... 66
Autoevaluación .. 67

1.7 Elabora tu proyecto: inicia la indagación 68

Planeación de un proyecto .. 68
Fases del proyecto .. 69
Diagrama de flujo para la elaboración del proyecto de investigación .. 70

Actividad experimental 1 .. 71
Conocimiento y uso del material más común en el laboratorio 71

Actividad experimental 2 .. 75
Del conocimiento empírico al conocimiento científico 75

2. Los cuerpos materiales de la vida cotidiana: su composición, cambios y propiedades.

2.1 La materia: ¿continua o discontinua? 79

Problematización .. 79
Adquisición y organización de la información 80
Procesamiento de la información 82
Aplicación de la información ... 83
Autoevaluación .. 88

2.2 Los cuerpos materiales de tu entorno: ¿cómo los clasificas? 85

Problematización .. 85
Adquisición y organización de la información 85
Procesamiento de la información 95
Aplicación de la información ... 98
Autoevaluación .. 99

2.3 Las propiedades de las sustancias: ¿para qué medirlas? 101

Problematización .. 101
Adquisición y organización de la información 102
Procesamiento de la información 107
Aplicación de la información ... 108
Autoevaluación .. 111
3. La estructura atómica y la periodicidad química: dos aspectos importantes.

3.1 El átomo y sus modelos: ¿qué cambios paradigmáticos consideras relevantes? ---139

Problematización ---139
Adquisición y organización de la información 141
Procesamiento de la información 156
Aplicación de la información 158
Autoevaluación ---160

3.2 Las partículas subatómicas: ¿alguna relación con nuestra vida cotidiana? ---162

Problematización ---162
Adquisición y organización de la información 163
Procesamiento de la información 166
Aplicación de la información 169
Autoevaluación ---171

3.3 Los isótopos: ¿qué beneficios y riesgos encuentras en su aplicación en los diferentes ámbitos de la vida? 173
3.4 El modelo atómico actual y su relación con la incertidumbre de hoy

Problematización
Adquisición y organización de la información
Procesamiento de la información
Aplicación de la información
Autoevaluación

3.5 La distribución de los electrones en el átomo: ¿realmente siguen reglas?

Problematización
Adquisición y organización de la información
Procesamiento de la información
Aplicación de la información
Autoevaluación

3.6 La configuración electrónica y la periodicidad: ubicación de los elementos en la tabla periódica.

Problematización
Adquisición y organización de la información
Procesamiento de la información
Aplicación de la información
Autoevaluación

3.7 La tabla periódica: ¿por qué es una herramienta importante en el estudio de la química?

Problematización
Adquisición y organización de la información
Procesamiento de la información
Aplicación de la información
Autoevaluación

3.8 Las propiedades periódicas

Problematización
Adquisición y organización de la información 243
Procesamiento de la información 249
Aplicación de la información 250
Autoevaluación 252

3.9 Elabora tu proyecto: procesa la información 254

Actividad experimental 6 255
La luminiscencia del cascarón de huevo 255

Actividad experimental 7 258
Espectros a la flama 258

4. Las sustancias: sus enlaces, nomenclatura y aplicaciones en la vida cotidiana.

4.1 Los modelos de enlace químico: ¿Cómo se unen los átomos, iones y moléculas? 263
Problematización 263
Adquisición y organización de la información 265
Procesamiento de la información 281
Aplicación de la información 282
Autoevaluación 287

4.2 La construcción de fórmulas químicas:
¿cómo nombrar a las sustancias? 289
Problematización 289
Adquisición y organización de la información 290
Procesamiento de la información 296
Aplicación de la información 297
Autoevaluación 298

4.3 Las sustancias iónicas: nomenclatura e importancia en la vida cotidiana 300
Problematización 300
Adquisición y organización de la información 301
Procesamiento de la información 309
Aplicación de la información 310
Autoevaluación 312
4.4 Las sustancias covalentes: nomenclatura e importancia en la vida cotidiana

Problematización
Adquisición y organización de la información
Procesamiento de la información
Aplicación de la información
Autoevaluación

4.5 Elabora tu proyecto: comunica tus resultados

Actividad experimental 8
Conductividad eléctrica en las disoluciones

Anexos

Aspectos generales para el trabajo en el laboratorio
Rúbrica para evaluar los productos de la actividad experimental

Bibliografía
Química General

Un enfoque en competencias

Presentación

La asignatura de Química General, se imparte en el primer semestre del bachillerato de la Universidad Autónoma de Sinaloa (UAS), tiene como propósito que el alumno explique los cambios que se presentan en las sustancias mediante el uso de los conocimientos básicos de la química y los diferentes niveles de representación de esta disciplina que le permitan a la vez, valorar la relación del ser humano con esta ciencia.

De este curso, se deriva el libro de Química General: un enfoque en competencias, que pertenece al componente básico del área de ciencias naturales del bachillerato de la UAS, plan 2009. Responde a las orientaciones del Marco Curricular Común del Sistema Nacional de Bachillerato, que busca promover el desarrollo de competencias genéricas, y disciplinares en los jóvenes bachilleres.

La obra consta de cuatro unidades de aprendizaje: La química como ciencia; los cuerpos materiales de la vida cotidiana: su composición, cambios y propiedades; la estructura atómica y la periodicidad química: dos aspectos importantes, y las sustancias: sus enlaces, nomenclatura y aplicaciones en la vida cotidiana.

En el desarrollo de estas unidades, se realizan un conjunto de actividades de manera procesual, retomando en buena medida el modelo didáctico de Robert Marzano (1999) y las adaptaciones realizadas por Chan (2000), en el que se hace uso de las cinco dimensiones del aprendizaje: problematización, adquisición y organización de la información, procesamiento de la información, aplicación de la información y autoevaluación.

1ª Dimensión. Problematización, en ella se generan ambientes positivos para el aprendizaje, se indagan los conocimientos previos, como punto de partida para la construcción de los nuevos saberes.

2ª Dimensión. Adquisición y organización del conocimiento, el estudiante desarrolla su capacidad lectora e indagatoria, de síntesis, organiza y relaciona el conocimiento previo con el nuevo.

3ª Dimensión. Procesamiento de la información, el estudiante hace uso de las habilidades cognitivas como comparar, clasificar, deducir, inducir, inferir, analizar, sintetizar. En otras palabras, interioriza la información, la aprehende, la hace suya, forma parte de su ser.

4ª Dimensión. Aplicación de la información, aquí se vincula lo aprendido con la problemática de la vida cotidiana y puede ser capaz de resolver nuevas situaciones problemáticas.
5ª Dimensión. Autoevaluación, cuando el estudiante se autoevalúa y es consciente de lo que aprende y cómo lo aprende, no sólo en lo conceptual, sino en lo procedimental y actitudinal-valoral, se puede decir que el alumno ha llegado a un punto tal, que puede convertirse en un alumno autogestivo.

No está por demás señalar, que este libro, es el recurso básico para el desarrollo de las competencias genéricas y disciplinares de los estudiantes. En él, encontraremos además de las actividades, los productos o evidencias del desempeño del estudiante, actividades experimentales y las rúbricas para evaluar el nivel de dominio logrado de forma individual y colaborativa. En cada una de las actividades, se pretende que el estudiante se exprese y comunique de manera correcta, que al emitir su opinión lo haga de manera crítica y reflexiva, que participe con responsabilidad en sus actividades de aula y extra aula, que aprenda a ser autogestivo y que tome decisiones que ayuden a su formación y crecimiento como persona.

Competencias genéricas a las que contribuye

1. Se conoce y valora a sí mismo, y aborda problemas y retos teniendo en cuenta los objetivos que persigue.
2. Elige y practica estilos de vida saludables.
3. Escucha, interpreta y emite mensajes pertinentes en distintos contextos, mediante la utilización de medios, códigos y herramientas apropiados.
4. Desarrolla innovaciones, y propone soluciones a problemas a partir de métodos establecidos.
5. Sustenta una postura personal sobre temas de interés y relevancia general, considerando otros puntos de vista de manera crítica y reflexiva.
6. Aprende por iniciativa e interés propio a lo largo de la vida.
7. Participa y colabora de manera efectiva en equipos diversos.
8. Contribuye al desarrollo sustentable de manera crítica, con acciones responsables.
1. Establece la interrelación entre la ciencia, la tecnología, la sociedad y el ambiente en contextos históricos y sociales específicos.

2. Fundamenta opiniones sobre los impactos de la ciencia y la tecnología en su vida cotidiana, asumiendo consideraciones éticas.

3. Identifica problemas, formula preguntas de carácter científico y plantea las hipótesis necesarias para responderlas.

4. Obtiene, registra y sistematiza la información para responder a preguntas de carácter científico, consultando fuentes relevantes y realizando experimentos pertinentes.

5. Contrasta los resultados obtenidos en una investigación o experimento con hipótesis previas y comunica sus conclusiones.

6. Valora las preconcepciones personales o comunes sobre diversos fenómenos naturales a partir de evidencias científicas.

7. Explica las nociones científicas que sustentan los procesos para la solución de problemas cotidianos.

8. Diseña modelos o prototipos para resolver problemas, satisfacer necesidades o demostrar principios científicos.

10. Relaciona las expresiones simbólicas de un fenómeno de la naturaleza y los rasgos observables a simple vista o mediante instrumentos o modelos científicos.

11. Analiza las leyes generales que rigen el funcionamiento del medio físico y valora las acciones humanas de riesgo e impacto ambiental.

13. Relaciona los niveles de organización química, biológica, física y ecológica de los sistemas vivos.

14. Aplica normas de seguridad en el manejo de sustancias, instrumentos y equipo en la realización de actividades de su vida cotidiana.
Colaboradores

Finalmente, deseamos agradecer a todos aquellos profesores de las diferentes Unidades Académicas del Bachillerato Universitario, que de manera directa e indirecta hicieron posible la concreción y enriquecimiento de esta obra con su participación en la edición 2007.

Unidad Académica “Preparatoria Emiliano Zapata”

Jesús Isabel Ortíz Robles, Edelia Godínez Martínez, Altagracia Cabrera Bernal, Griselda Zavala Bejarano, Gloria Maribel Zavala Bejarano y Abel Denny Castro Romo.

Unidad Académica “Preparatoria Central Diurna”

Unidad Académica “Preparatoria Hnos. Flores Magón”

Felipa Acosta Ríos, Alfredo Cabrera Hernández, Ana Edith Ayala Rodríguez, Blanca Delia Coronel M., César Cabrera Jáuregui, José de la Luz Castro Zavala y Jesús Paul Ríos Urias y Luz del Carmen Félix Garay.

Académica “Preparatoria Central Nocturna”

Silvino Valdez Insa, Filomeno Pérez Pérez, Gloria Maribel Zavala Bejarano Jenny Salomón Aguilar, Francisca Villa Castillo, Jorge Rafael Linares Amarillas, Leobardo Hernández Martínez, Rosario Beltrán Ruiz y Carlos Lenin Lin.

Unidad Académica Preparatoria “Rubén Jaramillo”

Patricia Zapata Esquivel, Blanca Gutiérrez Ruiz, Rosalío Carrasco Macias, Félix Francisco Aguirre y Asia Cecilia Carrasco Valenzuela.

Unidad Académica “Preparatoria Mazatlán”

Maura Elena Velázquez, Rosa R. Romero Castañeda, Herminia Ochoa Sarabia.

Unidad Académica “Preparatoria Víctor Manuel Tirado López”

Hugo E. Rivera y Martín Sarabia Zambrano

Unidad Académica “Preparatoria Escuinapa”

Evaristo Estrada Tejeda

Unidad Académica “Preparatoria Guasave Diurna”

María Luisa González Verdugo, Nora Leyva Leyva, Cuauhtémoc Romero Sánchez

Unidad Académica “Preparatoria Guasave Nocturna”

Rocío Cervantes Cervantes, Eloisa Bojórquez Castro y Sandra Carmina Osuna Izaguirre

Unidad Académica “Preparatoria Casa Blanca”

Margarita Elizabeth Ramírez Vega
Unidad Académica “Preparatoria La Reforma”
Ramón Camacho Leyva

Unidad Académica “Preparatoria Rafael Buelna”
Grimalda Sánchez Romo

Unidad Académica “Preparatoria Guamúchil”
Carmen Imelda Parra Ramírez, Leticia Márquez Martínez, Gabriela Galindo Galindo, Denisse Vega Gaxiola, Paúl Cháidez Ramírez y Judith Fuentes Márquez.

Unidad Académica “Preparatoria Angostura”
Juan Ariosto Quiroa Ceyca.

Unidad Académica “Preparatoria Navolato”
María de Jesús Moreno Alcázar, Angélica María Lázare González, Enedina Leyva Meléndrez, Margarita Soria Gritti y Juana López Sánchez.

Unidad Académica “Preparatoria La Cruz”
Quetzalli Alejandra Hernández Zárate, Maricruz Pérez Lizárraga, Héctor Rosas Miranda y Diego Alberto Ayón.

Unidad Académica “Preparatoria Dr. Salvador Allende”
Ana Alicia Esquivel Leyva, Alfredo Cabrera Hernández, Ana A. Cervantes Contreras, Alejandra Utrillas Quiroz y Ladislao Romero Bojórquez.

Unidad Académica “Preparatoria Heraclio Bernal”
Alfredo Herrera, Arreola Mara Sandra Araceli y Ana Elizabeth Arroyo E.

Unidad Académica “Preparatoria Genaro Vázquez”
María Lourdes López Machado y Consuelo García Aguilar.

Unidad Académica Preparatoria Vladimir Ilich Lenin
Alondra Castro Morales y Martín Camilo Camacho Ramírez.

Unidad Académica Preparatoria Victoria del Pueblo
Blanca Leticia Sánchez Silva.

Unidad Académica Preparatoria 8 de julio-Gabino Barreda
Nereyda Díaz Gustavo y Jesús María Medina Ramírez.

P Unidad Académica de la Preparatoria Juan José Ríos
Conrado Alfonso Díaz Acosta y Carlos Valdez Miranda.

Unidad Académica de la Preparatoria Ruiz Cortines
Ángel Rafael Álvarez Paz, Waldo Apodaca Medina, María del Rosario Mascareño Mendoza, Waldo Muñoz Espinoza, Juan Manuel Bojorquez García, Elmidelia Espinoza López y Rosa Imelda Moreno Flores.
Unidad Académica de la Preparatoria Mochis
Jorge Alberto Rodríguez Escobedo, Marcos Alfredo Lara Flores, Celso Olais Leal, Alfredo Valdez Gaxiola y Francisco Lenin Orizaba Franco.

Unidad Académica de la Preparatoria CU-Mochis
Reynaldo Castro Angulo, Ruth Guadalupe Cota Román y César González Ayala.

Unidad Académica de la Preparatoria Choix
Zenaida Meza Villalba, Carlos Valdez Miranda y Conrado Alfonso Díaz Acosta

Unidad Académica “Preparatoria Valle del Carrizo”
Jesús Torres Sumbra, Martín Robles Soto y Jesús Miguel Trejo Pompa.

Unidad Académica “Preparatoria El Fuerte”
Jaime Antonio Díaz Aguirre y Blanca E. Ruelas Germán

Unidad Académica “Preparatoria San Blas”
Del Rosario de los Ángeles Mora

Unidad Académica “Preparatoria Lázaro Cárdenas”
Bibiane Pierre Noél y Juan Gabriel Castro Flores.

Agradecemos profundamente a los Directivos de la Dirección General de Escuelas Preparatorias de la Universidad Autónoma de Sinaloa por el apoyo recibido para la publicación de este libro.

Atentamente

Culiacán de Rosales, Sinaloa, agosto de 2011

Javier Cruz Guardado
María Elena Osuna Sánchez
Jesús Isabel Ortíz Robles
Guillermo Ávila García
UNIDAD DE APRENDIZAJE I

La química como ciencia
Competencia de unidad

Describe los momentos cruciales de la química como ciencia, a través de las aportaciones que se dieron en la construcción de la misma, a la vez que valora el impacto que trajo consigo el desarrollo y aplicación de la ciencia y la tecnología en la calidad de vida y deterioro del ambiente.

Las visiones de la ciencia: pasado, presente y futuro.

- Define ciencia.
- Revisa las distintas visiones de la ciencia y reconstruye su concepto desde la visión actual.
- Valora la importancia del trabajo colectivo y colegiado en la producción del conocimiento científico.

1. Problematización

¿Qué es la ciencia para ti?

Actividad 1.1

Explora tus conocimientos previos, dando respuesta a las siguientes aseveraciones como falsas o verdaderas.

<table>
<thead>
<tr>
<th>Aseveración</th>
<th>F</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. La ciencia es un conjunto de conocimientos sistematizados y metodizados que nos conducen a una verdad absoluta.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>2. Para lograr conocimiento científico es necesario utilizar en forma mecánica un conjunto de pasos, conocido como método científico (observación, planteamiento de hipótesis, etc.).</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>3. Los científicos generalmente usan el pelo largo, son inteligentes, descuidados en su persona y trabajan en forma aislada.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>4. La ciencia es producto de la actividad social, se construye y se desarrolla de manera colectiva a lo largo de la historia.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>5. La ciencia sólo estudia hechos y fenómenos naturales.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>6. El conocimiento científico sólo sirve para trabajar en el laboratorio, para investigar, pero no sirve de nada en la vida cotidiana.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>7. No es posible desligar a la ciencia, de lo social, lo político y lo económico.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>8. El conocimiento sólo se puede obtener a partir de la observación y la experiencia.</td>
<td>F</td>
<td>V</td>
</tr>
</tbody>
</table>
2. Adquisición y organización de la información

Actividad 1.2

En forma individual lee la información que se te proporciona acerca de las distintas visiones de la ciencia.

Las visiones de la ciencia

La ciencia es parte del legado cultural de la humanidad, necesario e indispensable para explicar el mundo que nos rodea. A través de los años, la imagen y el concepto de ciencia se ha venido transformando. Actualmente los medios de comunicación, la escuela y los propios científicos, han contribuido y con mucho a transmitir una imagen de la ciencia y de los científicos, totalmente deformada de la realidad. Observa las siguientes imágenes y trata de encontrar algunas características de la visión que proyectan.

Fig. 1.1 La visión de científico que se transmite desde los medios de comunicación.
Visión individualista y elitista de la ciencia

La visión individualista y elitista de la ciencia, nos muestra la imagen de un científico trabajando en forma aislada, enviando con ello una imagen de que el conocimiento sólo puede ser producto y obra de los genios. Ignorando con ello, el papel fundamental que juega el trabajo colectivo en la producción del conocimiento científico.

Desde esta visión, «un científico es siempre alguien vestido con bata blanca que manipula aparatos en un laboratorio» (Pozo, 2006: 22).

Visión rígida y dogmática (positivista)

Aquí se presenta a la ciencia desde una visión rígida, dogmática, y exacta de la actividad científica. Se dice que es rígida en tanto que presenta al método científico como un conjunto de etapas o pasos a seguir de manera mecánica, destacando el rigor del mismo y el carácter exacto de los resultados obtenidos. Por ejemplo, casi siempre se muestra la siguiente secuencia: observación, formulación de preguntas, hipótesis, experimentación y formulación de conclusiones que llevan al establecimiento de teorías o leyes.

Desde este punto de vista, para hacer ciencia sólo es necesario aprender o utilizar un único método científico que garantice la validez del conocimiento.

Visión pura, neutra y objetiva de la ciencia

La ciencia no puede estar desligada de la vida cotidiana y de sus repercusiones sociales. López Caicedo (2002) considera que no es posible pensar en una ciencia pura cuya contextura esté más allá de la naturaleza humana, o, en otras palabras; no es posible separar la historia económica, política y social de la científica. La ciencia no esta desligada de la vida cotidiana y de sus repercusiones sociales, pues entran en juego también, los compromisos, intereses y valores de la comunidad científica.

Ruy Pérez Tamayo (2000), científico mexicano afirma que el hombre de ciencia al igual que el campesino, el obrero, el ferrocarrilero y el artista es un ser humano, posee tres dimensiones, está repleto de sueños y ambiciones, fuerzas y debilidades, libertad y compromiso, en todo esto el hombre de ciencia, es mucho más hombre que ciencia.
Imaginemos a un intrépido marine estadounidense, en medio del desierto, en campaña. Pobre, está lejos de su patria, lejos de su hogar y de su familia. Y además tiene hambre. Y no tiene nada que comer ... excepto su paquete MRE (*Meal, Ready-to-Eat*) que, normalmente consiste de un guisado de pollo (o spaghetti) y bolas de carne.

El bravo soldado escoge su ración, se la lleva a la boca y ... ¡oh tragedia! está fría. ¿Cómo la vida puede ser tan cruel con un valiente? ¿Por qué el destino se ensaña así con la gente buena? No, no, eso no se puede permitir. ¿Para qué está el progreso? Algo se tiene que hacer. Y se hizo. Los pobres marines, que entraron en acción en la tristemente célebre guerra de 1991 contra Irak, ya no sufrieron más. Gracias a los esfuerzos del *U.S. Army Natick Research, Development and Engineering Center* y de la *Zesto Therm* (una compañía en Cincinnati), estos desvalidos combatientes pudieron ingerir comida caliente y, de este modo, aliviar en algo la terrible circunstancia de hallarse tan lejos de cualquier Mac Donalds.

Para garantizar comida caliente, en el campo de batalla, los investigadores diseñaron una laminilla de plástico generadora de calor. Esta laminilla contiene una especie de hule espuma en cuyos poros se encuentra una sustancia química que, al mezclarse con agua, produce calor. Los soldados simplemente colocan la laminilla generadora de calor sobre el paquetito de comida, luego meten ambos dentro de una bolsa de plástico y, finalmente, agregan unos 30 mL de agua. Se esperan entre 12 y 15 minutos hasta que la comida alcanza una temperatura cercana a los 60 ºC.

Ahora sí, desde hoy y para siempre, ningún esforzado marine volverá a vivir la terrible experiencia de ingerir comida fría, ni antes ni después de librar al mundo libre de otro *homo sapiens* en vías de desarrollo.»Maldita ciencia«, podría uno decir, «sólo para eso sirve: ¡para fregar!». Pero, cuidado, la ciencia, un término abstracto, no piensa, no decide, no ejecuta, los que piensan, deciden y ejecutan son gente de carne y hueso. «Una comida caliente es una gran motivación para un soldado en el campo de batalla».

Esto no lo dijo la «ciencia», esto lo dijo Donald Pickard, el responsable de esta investigación. No, no hay ciencia mala ni ciencia buena. Lo que hay son científicos, no sólo de carne y hueso, sino con una posición política e ideológica, en algunas ocasiones, muy claramente definida, como es el caso de este Donald Pickard.

Tomado de http://plinios.tripod.com/pobrecit.htm

Visión acumulativa de la ciencia

Desde esta visión, la ciencia se considera como un «conjunto de conocimientos sistematizados obtenidos por medio del método científico». A partir de esta visión los conocimientos se van acumulando unos tras otros hasta llegar a la teoría correcta. En ella se hace énfasis en los contenidos científicos y en una visión enciclopedista, donde
se considera que las ciencias estan contenidas en los textos, como saberes abstractos, verdaderos e incuestionables.

Visión actual de la ciencia (social e interdisciplinaria)

En la visión actual, la ciencia se concibe como un producto de la actividad social. Es decir, el conocimiento se considera como producto de la mente humana, que se construye en forma colectiva a lo largo de la historia.

La imagen de científico que se proyecta, es la de aquel que trabaja de manera colaborativa e interdisciplinaria con otros investigadores, publica sus resultados en revistas o journals, asiste a congresos y dicta conferencias y pertenece a grupos políticos y sociales.

Desde esta visión, el intercambio de ideas y las discusiones entre los científicos son esenciales para el desarrollo de la ciencia.

Asimismo, se considera que no existe un único método científico, sino que cada ciencia y cada investigador genera su propio método de investigación.

Aún cuando en la imagen se muestran científicos que usan bata, matraces, aparatos, muchos de ellos no los usan, porque se dedican a investigar en otras áreas de la ciencia, como la psicología, economía, historia, sociología, medicina, entre otras.

La visión actual de ciencia se la debemos a Thomas S. Khun, quien en 1962 publicó su obra conocida como «La estructura de las revoluciones científicas», en la que aborda su concepto de *paradigma* y *cambio de paradigma*.

Kuhn dio al concepto de *paradigma* su significado cuando lo adoptó para referirse al conjunto de prácticas que definen una disciplina científica durante un período específico de tiempo. Lo define además, como «una completa constelación de creencias, valores y técnicas, etc. compartidas por los miembros de una determinada comunidad».

Los paradigmas son por tanto, los *marcos teóricos* o *perspectivas* bajo las cuales se analizan los problemas y se trata de resolverlos. En la actualidad el término se utiliza para definir un modelo, un marco teórico, un modo de pensar o un esquema para interpretar la realidad.

Definido así, el paradigma se transforma en una guía para la investigación y la interpretación de los hechos, de forma tal, que genera confianza y garantiza la posibilidad de solución a la situación problemática, por difícil que ésta sea. Kuhn denomina a este proceso *ciencia normal*, porque se desarrolla bajo la orientación y aceptación acrítica de un paradigma.

La crítica a la teoría dominante, existe en periodos de crisis, y es cuando puede surgir una nueva teoría o paradigma. A este proceso Kuhn, lo denomina «ciencia revolucionaria».
¿Qué es la ciencia?

Por: Ruy Pérez Tamayo

En estos principios del siglo XXI la pregunta que encabeza estas líneas podría parecer superflua, porque obviamente ya todo el mundo debería saber muy bien qué es la ciencia. Pero lamentablemente existen pruebas objetivas de que la naturaleza, el contenido y las funciones de la ciencia son muy diferentes para distintos grupos sociales, económicos, políticos y profesionales. Parte de la explicación de esta pluralidad de significados de la palabra «ciencia» es la propia riqueza del concepto, pero otra parte es que los seres humanos somos los dueños del lenguaje, el sentido de las palabras lo decidimos nosotros a través de su uso. Esto puede crear conflictos, como el ilustrado por el Diccionario de la Real Academia Española (DRAE), que en su edición de 2001 todavía registra que en México «renacuajo» es sinónimo de «ajolote»; muchos sabemos que se trata de dos animales diferentes, pero la gente los denomina indistintamente. No es culpa del DRAE, cuya función es registrar el uso del idioma castellano y no legislar sobre él. No hace mucho, un alto funcionario de Conacyt señaló: «...a la mejor para un investigador hacer un coche o un refrigerador tampoco les va a sonar a ciencia».

En el caso de la palabra «ciencia», el DRAE es bien claro, significa conjunto de conocimientos obtenidos mediante la observación y el razonamiento, sistemáticamente estructurados y de los que se deducen principios y leyes generales. Esto no incluye hacer coches o refrigeradores, por lo menos hasta el año 2001, pero no es imposible que si el arte de producir automóviles y frigoríficos sigue llamándose «ciencia» en algunos sectores de nuestra sociedad, la próxima edición del DRAE lo incluya como mexicanismo, igual que llamar ajolotes a los renacuajos. Pero quizá el alto funcionario del Conacyt usó la palabra ciencia en la segunda acepción del término incluida en el DRAE, que es Saber o erudición. Tener mucha o poca ciencia. Ser un pozo de ciencia. Hombre de ciencia y virtud, o quizá en la tercera acepción, que es Habilidad, maestría, conjunto de conocimientos en cualquier cosa. La ciencia del caco, del palaciego, del hombre vividor... Creo que nunca lo sabremos.

Un repaso de los diferentes significados de la palabra ciencia, tanto a lo largo de la historia como en la actualidad, debería convencernos de que el referente ha sido y sigue siendo variable, casi camaleónico. Hubo un tiempo en que la retórica, la gramática y la teología eran ciencias, mientras que en la actualidad la diacrónica y el creacionismo se autodenominan ciencias, y la UNAM tiene una Facultad de Ciencias Políticas. Esta proliferación casi neoplásica de las «ciencias» es consecuencia de su gran prestigio, aunque la existencia de grupos anticientíficos, tanto en el pasado como en nuestros días, no debe ignorarse; de todos modos, en el idioma de la mercadotecnia actual «científico» quiere decir «verdadero», «cierto» o «demostrado».

Cuando el anuncio de la nueva crema contra las arrugas, o la nueva pasta dental contra las caries, señala que su efectividad ha sido probada «científicamente», ya no cabe duda alguna: su uso garantiza que las arrugas y las caries serán eliminadas para siempre. En otras palabras, el impacto de la ciencia moderna en la vida del mundo occidental, a partir de su emergencia en los siglos XVI-XVIII, no sólo en la esfera cultural sino también en otros sectores como el social, el económico y el político, y otros aún más específicos, como el médico, el legal y el militar, la transformó en apenas 200-400 años en una de las fuerzas más importantes en la estructuración
de la sociedad moderna. En la actualidad nadie discute que la mejor medicina es la científica, muchos juicios legales se definen usando pruebas científicas, y las guerras las ganan los países con mejor desarrollo científico.

Muchos juicios legales se definen usando pruebas científicas, y las guerras las ganan los países con mejor desarrollo científico.

En el mundo oficial mexicano, la ciencia surgió a la sombra de la tragedia de Tlatelolco, y como parte de los discursos demagógicos de fines de los años 60, con un informe del Instituto Nacional de Investigación Científica (INIC) sobre su estado desastroso en el país. La ciencia oficial nació como un intento del presidente Echeverría de acercarse a la comunidad intelectual del país, que lo rechazaba abiertamente, pero nació casada con la tecnología. La historia de la ciencia en México es tan antigua como el país, pero la tradición científica es mucho más joven (no tiene más de 70 años), y el reconocimiento oficial de su existencia data de la creación del Conacyt, el 29 de diciembre de 1970.

En el mensaje que precede al decreto mencionado, y en relación con una política científica y tecnológica, el presidente Echeverría dijo: «En la actualidad no se dispone de un mecanismo a nivel nacional que permita formular y ejecutar esa política. Existen distintos órganos que realizan investigación; otros que preparan, a distintos niveles, recursos humanos; y, por último, otros más que en forma fragmentaria y deficiente, coordinan, fomentan o prestan un apoyo raquítico y disperso a las actividades científicas y tecnológicas». En todo este documento no hay una definición de lo que son la ciencia y la tecnología, quizá porque se creyó, como hoy, que no era necesaria.

Algunos filósofos de la ciencia proponen que las ciencias se han hecho tan complejas que ya no es posible definirlas ni separarlas de la tecnología, y se refieren a ellas en forma global como tecnociencia.

El problema se centra en lo que se persigue con las definiciones señaladas: si el fin es generar una definición perfecta, que excluya a todo lo que no es ciencia e incluya a todas las ciencias presentes y futuras, creo que tienen razón. Pero si el objetivo es enunciar una definición operativa, que sirva para delimitar en forma razonable a las ciencias contemporáneas de las pseudociencias, por un lado, y de la tecnología, por el otro, y que esté abierta a posibles modificaciones futuras, entonces creo que están equivocados.

Desde luego, existen diferentes definiciones de ciencia y tecnología de este tipo operacional, incluyendo las que yo he propuesto, que son las siguientes:

Ciencia: actividad humana creativa cuyo objetivo es la comprensión de la naturaleza y cuyo producto es el conocimiento, obtenido por un método científico organizado en forma deductiva y que aspira a alcanzar consenso entre los expertos relevantes.

Tecnología: actividad humana creativa cuyo objetivo es la transformación de la naturaleza y cuyos productos son bienes de consumo y/o de servicio.

En diferencia con la definición del DRAE citada arriba, que identifica a la ciencia con una «cosa» (conjunto de conocimientos), yo prefiero concebirla como una «actividad», o sea algo que se hace y que requiere creatividad, por lo que es característico (por no decir específico) de la especie humana, y que resulta en nuevos conocimientos. Este es el único producto de la ciencia, es para lo único que sirve. Lo que se hace con ese producto son dos cosas: o usarlo para generar más conocimientos, o para resolver problemas externos a la ciencia, generalmente conocidos como tecnología, y que a veces resultan en automóviles o refrigeradores. Por eso es que toda la ciencia es aplicada. No hay conocimientos inútiles, el nuevo conocimiento siempre sirve para algo: para hacer nuevas preguntas y diseñar nuevas observaciones y/o experimentos, o para resolver problemas externos a la ciencia y propios de la tecnología.

Profesor Emérito de la Universidad Nacional Autónoma de México

Miembro del Consejo Consultivo de Ciencias (CCC)

Miembro de El Colegio Nacional y de la Academia Mexicana de la Lengua

Indaga sobre el concepto ciencia haciendo uso de las diversas fuentes de información (electrónicas o impresas). Acude para ello, mínimamente a cinco fuentes o autores.

<table>
<thead>
<tr>
<th>Tipo de fuente</th>
<th>Autor</th>
<th>Concepto de ciencia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Procesamiento de la información

Actividad 1.4

Elabora un mapa conceptual donde incorpores los conceptos que consideres relevantes sobre la ciencia y las distintas visiones de la misma.

La ciencia

y sus distintas

visiones

se caracterizan por
De manera colaborativa, da respuesta a los siguientes cuestionamientos, después de realizar la lectura sobre el artículo ¿qué es la ciencia? del Dr. Ruy Pérez Tamayo.

1. ¿Cómo define a la ciencia el Dr. Ruy Pérez Tamayo?

__
__
__
__

2. ¿Cuál es la diferencia principal entre la definición de ciencia del Dr. Ruy Pérez Tamayo y la que plantea el Diccionario de la Real Academia Española? ¿Tiene algo que ver la visión que proyecta cada una de ellas? Si es así, cuál es la diferencia.

__
__
__
__

3. ¿Cuál es el producto principal de la ciencia, desde la visión del Dr. Ruy Pérez Tamayo?

__
__
__
__

4. ¿Cuando el Dr. Ruy Pérez Tamayo menciona a las pseudociencias, a qué se refiere? Aparte de las mencionadas por el Dr., ¿conoces otras pseudociencias?

__
__
__
__
4. Aplicación de la información

Actividad 1.6

Utiliza la información para clasificar a cada una de las definiciones de ciencia investigadas, con base a la visión de ciencia que proyectan.

<table>
<thead>
<tr>
<th>Tipo de fuente</th>
<th>Autor</th>
<th>Concepto de ciencia</th>
<th>Visión de ciencia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Autoevaluación

Actividad 1.7

Elabora un escrito donde reflexiones acerca de la importancia del trabajo colectivo y colegiado en la producción del conocimiento científico.

__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
Autoevaluación
La siguiente rúbrica te será de gran ayuda para elaborar tu reflexión escrita, deberás considerar los criterios y los indicadores con los que será evaluado tu trabajo.

Rúbrica para evaluar la reflexión escrita

<table>
<thead>
<tr>
<th>Criterios</th>
<th>4-Excelente</th>
<th>3-Bueno</th>
<th>2-Suficiente</th>
<th>1-Insuficiente</th>
<th>Puntuación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enfoque o Idea principal</td>
<td>La idea principal menciona el tema de reflexión y esquematiza los puntos principales.</td>
<td>La idea principal menciona el tema de reflexión.</td>
<td>La idea principal esquematiza algunos o todos los puntos a discutir, pero no menciona el tema de reflexión.</td>
<td>La idea principal no menciona el tema de reflexión, ni los puntos a discutir.</td>
<td></td>
</tr>
<tr>
<td>Opinión</td>
<td>La opinión presenta una afirmación clara y bien fundamentada de la posición del alumno sobre el tema de reflexión.</td>
<td>La opinión presenta una afirmación clara de la posición del alumno sobre el tema de reflexión.</td>
<td>Hay una opinión, pero no está expresada claramente.</td>
<td>No hay ninguna opinión.</td>
<td></td>
</tr>
<tr>
<td>Gramática y ortografía</td>
<td>El alumno no comete errores de gramática ni de ortografía.</td>
<td>El autor comete 1 a 2 errores gramaticales u ortográficos.</td>
<td>El autor comete 3 a 4 errores gramaticales u ortográficos.</td>
<td>El autor comete más de 4 errores gramaticales u ortográficos.</td>
<td></td>
</tr>
<tr>
<td>Uso de mayúsculas y puntuación</td>
<td>El alumno no comete errores con las mayúsculas o con la puntuación lo que hace que el escrito sea excepcionalmente fácil de leer.</td>
<td>El alumno comete 1 a 2 errores con las mayúsculas o con la puntuación, pero el escrito es todavía fácil de leer.</td>
<td>El alumno comete varios errores con las mayúsculas y/o con la puntuación que son obvios.</td>
<td>El alumno comete varios errores con el uso de las mayúsculas y/o con la puntuación que son obvios.</td>
<td></td>
</tr>
<tr>
<td>Fuentes</td>
<td>Todas las fuentes usadas para las citas son creíbles y están citadas correctamente.</td>
<td>Todas las fuentes usadas para las citas son creíbles y la mayoría está citada correctamente.</td>
<td>La mayoría de las fuentes usadas para las citas, son creíbles y están citadas correctamente.</td>
<td>Muchas fuentes son sospechosas y/o no están citadas correctamente.</td>
<td></td>
</tr>
</tbody>
</table>
En la construcción de la química como ciencia: ¿cuáles cambios paradigmáticos consideras relevantes?

- Describe algunos de los cambios paradigmáticos que se dieron en la construcción y desarrollo de la Química.
- Relata algunos de los sucesos en la historia de la Química que permitieron el avance de la misma.
- Muestra disposición e interés por conocer el desarrollo histórico de la química.

1. Problematización

¿En la historia de la química, se dieron muchos cambios paradigmáticos que fueron indispensables para su desarrollo y consolidación como ciencia. ¿Qué cambios consideras más relevantes en la historia de la química?

Actividad 1.8

Explora tus conocimientos previos, dando respuesta a las siguientes aseveraciones como falsas o verdaderas.

1. El conocimiento que el sujeto obtiene de su interacción con el medio, a través de su experiencia cotidiana y de la interacción social se le conoce como empírico.
 F **V**

2. El conocimiento científico es verdadero y absoluto.
 F **V**

3. El conocimiento empírico es el más utilizado por el ser humano en los distintos contextos de su vida cotidiana.
 F **V**

4. Los cambios paradigmáticos son una muestra de que el conocimiento científico aporta verdades relativas.
 F **V**

5. La teoría atómica de Dalton se considera uno de los principales cambios paradigmáticos del siglo XVIII.
 F **V**

6. La teoría del flogisto no tiene ninguna relación con la teoría de los *ninis*, esta es una teoría pseudocientífica que trata de explicar el fenómeno de la combustión.
 F **V**

7. Las teorías, son modelos que permiten explicar por qué la naturaleza o los sujetos se comportan de manera determinada.
 F **V**

8. La teoría del flogisto fue derrumbada teóricamente y experimentalmente por Lavoisier.
 F **V**

9. La construcción de lo que hoy conocemos como tabla periódica, sólo fue obra de un solo científico: Dimitri Ivanovich Mendeleiev.
 F **V**
2. Adquisición y organización de la información

Actividad 1.9

En forma individual lee la información que se te proporciona acerca de los cambios paradigmáticos en la historia de la química.

A lo largo de la historia, el ser humano ha observado los fenómenos que ocurren en la naturaleza e intentado buscar explicaciones de los mismos. Al conocimiento que el sujeto obtiene de esa interacción con el medio, a través de su experiencia cotidiana y a través de la interacción social, se le conoce como conocimiento empírico.

Se dice que el conocimiento empírico es útil y práctico, porque le sirve al ser humano en los distintos contextos de la vida cotidiana, para interpretar situaciones (hechos y fenómenos), proporcionar explicaciones, hacer anticipaciones y también, para formular nuevas concepciones.

Ese conocimiento no se descubre, se construye; el sujeto construye su conocimiento a partir de su propia forma de ser, pensar, interpretar y reinterpretar la información. Esta construcción es gradual, el sujeto va construyendo modelos explicativos cada vez más complejos y profundos.

Una teoría (modelo) es una interpretación o explicación general del por qué sucede un fenómeno, y producto a la vez de la comprobación de varias hipótesis sobre un mismo hecho o fenómeno.

Las teorías cambian, porque el conocimiento científico proporciona verdades relativas, no absolutas. Así, el avance científico en una época, puede superar a una teoría para dar lugar a otra de mayor inclusión. Ejemplos diversos podemos encontrarlos en la historia de la ciencia y uno de los más representativos es el de la teoría atómica. Podemos decir, que la materia ha permanecido igual durante millones de años, pero las explicaciones sobre su composición -teorías- han variado desde los filósofos griegos a la actualidad.

Los cambios paradigmáticos en la historia de la Química

El Flogisto y la combustión

Los cambios paradigmáticos en la química podemos decir que inician principalmente en el siglo XVIII, ya que siglos atrás, la química al igual que otras ciencias, sus conocimientos tenían un carácter pseudocientífico. Es en este periodo que surge la teoría del flogisto planteada por George Ernest Stahl (1660-1734). Según la cual, el flogisto se liberaba durante la combustión y durante la calcinación o enmohecimiento de los metales.

Los trabajos de Antoine Laurent Lavoisier (1743-1794), sobre la combustión y calcinación de los metales, sentaron las bases para el estudio sistemático de las reacciones químicas sobre bases cuantitativas. Lavoisier introdujo el uso de la balanza y demostró que los metales no liberan flogisto al calcinarse, sino que se combinan con un elemento componente del aire y de ahí su incremento en peso.
A partir de entonces nombró a este nuevo elemento gaseoso como oxígeno. Sus resultados fueron plasmados en el «Tratado elemental de Química», publicado en 1789 y con ello se daba el derrumbe de una teoría y el surgimiento de otra, es este uno de los cambios paradigmáticos en la química que ayudaron a explicar los fenómenos de la combustión y la respiración.

Actividad 1.10

Indaga en diversas fuentes electrónicas o bibliográficas, el concepto de flogisto planteado por Stahl.

La clasificación de los elementos

En 1864, el químico inglés John Alexander Reina Newlands (1837-98), ordenó los elementos conocidos según sus pesos atómicos crecientes, y observó que esta ordenación también colocaba las propiedades de los elementos en un orden, al menos parcial (ver fig. 1.9). Al disponer los elementos en columnas verticales de siete, los que eran semejantes tendían a quedar en la misma fila horizontal. Así, el potasio quedó cerca del sodio muy semejante a él; el selenio quedó en la misma línea que el azufre, muy parecido; el calcio próximo al magnesio, y así sucesivamente. Y efectivamente, las tres tríadas de Dobereiner se hallaban en dichas filas.

Newlands llamó a esto, la ley de las octavas (en música, siete notas forman una octava, siendo la octava nota casi un duplicado de la primera y principio de una nueva octava). Desgraciadamente, mientras unas filas de esta tabla contenían elementos semejantes, otras contenían elementos enormemente dispares. Los químicos pensaron que lo que Newlands trataba de demostrar era más una coincidencia que algo significativo. No pudo conseguir que su trabajo fuese publicado.

Más éxito tuvo el químico alemán Julius Lothar Meyer (1830-95). Meyer consideró el volumen ocupado por determinados pesos fijos de los diversos elementos, en tales condiciones, cada peso contenía el mismo número de átomos de su elemento. Esto significaba que la razón de los volúmenes de los diversos elementos era equivalente a la razón de los volúmenes de los átomos simples que componían a dichos elementos. Así, pues, se podía hablar de volúmenes atómicos.

Al representar los volúmenes atómicos de los elementos en función de los pesos atómicos, se obtenían una serie de ondas que alcanzaban valores máximos en los metales alcalinos: sodio, potasio, rubidio y cesio. Cada descenso y subida a un máximo o mínimo correspondería a un período en la tabla de

Fig. 1.10 Meyer determinó el volumen atómico dividiendo el peso atómico entre la densidad de una muestra sólida o líquida del elemento.
elementos. En cada período, también descendían y subían otras propiedades físicas, además del volumen atómico (véase figura 1.10).

El hidrógeno, el primero de la lista de elementos (porque tiene el peso atómico más bajo), es un caso especial, y puede considerarse que constituye él solo el primer período.

El segundo y tercer periodos de la tabla de Meyer comprendían siete elementos cada uno, y repetían la ley de Newlands de las octavas. Sin embargo, las dos ondas siguientes comprendían más de siete elementos, y esto demostraba claramente que Newlands había cometido un error. No se podía forzar a que la ley de las octavas se cumpliese estrictamente a lo largo de toda la tabla de elementos, con siete elementos en cada fila horizontal. Los últimos periodos tenían que ser más largos que los primeros.

Actividad 1.11

Indaga en diversas fuentes electrónicas o bibliográficas, los cambios paradigmáticos provocados por el descubrimiento del electrón y del núcleo atómico.

Descubrimiento del electrón: ___

Descubrimiento del núcleo atómico: _______________________________________

3. Procesamiento de la información

Actividad 1.12

Completa el cuadro con ejemplos de cambios paradigmáticos en la historia de la química. Observa el ejemplo y contrasta la teoría que se sustituye con la nueva teoría que se impone, identificando los pensadores o científicos que las representan.

<table>
<thead>
<tr>
<th>Hecho o fenómeno</th>
<th>Teoría que se sustituye</th>
<th>Científico que la representa</th>
<th>Nueva teoría que se impone</th>
<th>Científico que la representa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Síntesis de la urea</td>
<td>Teoría vitalista</td>
<td>J.J. Berzelius</td>
<td>Síntesis orgánica moderna</td>
<td>Friedrich Wöhler</td>
</tr>
<tr>
<td>Clasificación periódica</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combustión</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descubrimiento del electrón</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descubrimiento del núcleo atómico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Aplicación de la información

Actividad 1.13

En la siguiente figura se observa una secuencia de modelos atómicos, que muestra los cambios paradigmáticos desde Dalton hasta Bohr. Utiliza la información que se te proporciona y completa la tabla que se muestra abajo.

![Figura de modelos atómicos]

<table>
<thead>
<tr>
<th>Hecho o fenómeno</th>
<th>Teoría que se sustituye</th>
<th>Científico que la representa</th>
<th>Nueva teoría que se impone</th>
<th>Científico que la representa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descubrimiento del electrón</td>
<td>Modelo atómico de Dalton</td>
<td>John Dalton</td>
<td>Modelo atómico de Thomson</td>
<td>J.J.Thomson</td>
</tr>
</tbody>
</table>

5. Autoevaluación

Actividad 1.14

Elabora un escrito donde reflexiones acerca de la importancia que tiene el estudio del desarrollo histórico de la química.

__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
Autoevaluación

Actividad 1.15

Resuelve el siguiente crucigrama relacionado con el tema de cambios paradigmáticos en la historia de la química.

Cambios paradigmáticos

<table>
<thead>
<tr>
<th>Horizontales</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. ¿Cómo muere Lavoisier durante la Revolución Francesa?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Fenómeno químico que requiere siempre de un combustible y un comburente.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Basó su clasificación en los volúmenes atómicos y propició el derrumbe de la ley de las octavas.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Consideraba a los átomos como esferas indivisibles e indestructibles</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verticales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Propuso la teoría del flogisto</td>
</tr>
<tr>
<td>2. Teoría que trató de explicar el fenómeno de la combustión.</td>
</tr>
<tr>
<td>3. Derrumba la teoría del flogisto a través de su experimento de los doce días.</td>
</tr>
<tr>
<td>6. Nombre asignado por Lavoisier que significa formador de ácidos.</td>
</tr>
<tr>
<td>7. Propuso la clasificación periódica denominada «Ley de las octavas».</td>
</tr>
</tbody>
</table>
Autoevaluación

Actividad 1.16

Autoevalúa tu nivel de desempeño usando la siguiente lista de cotejo.

<table>
<thead>
<tr>
<th>Criterios</th>
<th>Sí</th>
<th>No</th>
<th>Puntaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Da respuesta a las preguntas exploratorias.</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Indaga sobre el concepto flogisto</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Indaga en diversas fuentes electrónicas o bibliográficas el descubrimiento del electrón y del núcleo atómico.</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Completa el cuadro sobre cambios paradigmáticos.</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Realiza la lectura sobre clasificación periódica e identifica el cambio paradigmático que se presenta.</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Completa la tabla que muestra los cambios paradigmáticos desde Dalton hasta Bohr</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Resuelve de manera correcta el crucigrama.</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Se integra de manera eficiente al trabajo colaborativo.</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Participa con respeto y tolerancia en el equipo.</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Participa con responsabilidad en el cumplimiento de las actividades.</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Valora la importancia del trabajo científico para la humanidad.</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
La aplicación de la ciencia y la tecnología: beneficios y riesgos para la sociedad y el ambiente.

- Describe el impacto que ha tenido el desarrollo y aplicación de la ciencia y la tecnología desde la revolución industrial hasta nuestros días.
- Expresa y fundamenta su opinión en forma escrita y oral sobre los beneficios y riesgos de la ciencia y la tecnología en su vida cotidiana.
- Valora los beneficios y riesgos que ha traído consigo el desarrollo y aplicación de la ciencia y la tecnología, tanto en la calidad de vida como en el deterioro del ambiente.

1. Problematización

¿Qué beneficios y riesgos existen cuando consumes un refresco de cola?

Actividad 1.17

Explora tus conocimientos previos, dando respuesta a las siguientes aseveraciones como falsas o verdaderas.

<table>
<thead>
<tr>
<th>Aseveración</th>
<th>F</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. El calentamiento global es un término que se utiliza para referirse al fenómeno del aumento de la temperatura media global de la atmósfera terrestre.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>2. El principal efecto que causa el calentamiento global es el efecto invernadero.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>3. Uno de los principales gases que provocan el efecto invernadero es el CO₂.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>4. El uso de insecticidas y plaguicidas en la agricultura trae consigo sólo beneficios.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>5. El botulismo es una intoxicación que se puede presentar por consumir alimentos enlatados en mal estado y la presencia de la bacteria Clostridium Botulinum.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>6. El uso de combustibles fósiles no genera ningún peligro para el ambiente.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>7. La automedicación en México empieza a reducirse por las medidas adoptadas por la Secretaría de Salud.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>8. El arrojar pilas eléctricas a la basura no genera ningún riesgo.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>9. Los envases de plástico pueden y deben ser reusados o reciclados.</td>
<td>F</td>
<td>V</td>
</tr>
</tbody>
</table>
2. Adquisición y organización de la información

Actividad 1.18

En forma individual lee la información que se te proporciona acerca de la aplicación de la ciencia y la tecnología: beneficios y riesgos para la sociedad y el ambiente.

Introducción

Entre la ciencia y la tecnología existe una gran diferencia, dado que la ciencia representa un cuerpo abstracto de conocimientos y la tecnología constituye la aplicación física de esos conocimientos en la sociedad en que vivimos. La ciencia genera conocimiento y la tecnología productos.

Los beneficios proporcionados por la química son muy amplios, pero también los riesgos han aumentado; el uso indiscriminado de plásticos, edulcorantes, colorantes y saborizantes sintéticos, así como los combustibles fósiles en nuestra moderna forma de vida, ha llevado a generar contaminación de suelo, aire y agua, que de alguna manera están afectando nuestras vidas.

Beneficios

La química nos brinda bastantes satisfactores, que nos hacen la vida más cómoda y elevan nuestro nivel de vida. Nos proporciona productos para uso en el hogar, tales como: jabones, pastas dentales, cerillos, limpiadores, blanqueadores, plásticos, etc.

Las telas con que nos vestimos y decoramos la casa, se fabrican en gran medida con fibras sintéticas producidas por reacciones químicas, así como los colorantes con los que se tiñen.

La química está presente en la agricultura, en la producción de fertilizantes e insecticidas que mejoran los cultivos y además permiten obtener abundantes cosechas.

Juega un papel muy importante en el procesamiento y conservación de los alimentos.
Los refrigerantes hacen posible que se conserven grandes cantidades de productos alimenticios.
La fabricación de fármacos, ya sea extraídos de productos naturales o sintéticos han contribuido a mejorar la salud y a prolongar la vida de los seres humanos.
Nuestro ambiente está repleto de productos químicos fabricados por el hombre y obtenidos mediante la síntesis química. Pero, no necesitas ir muy lejos, nuestro cuerpo funciona como una extraordinaria y compleja fábrica química. Es como un tubo de ensayo, en el que a partir de oxígeno y alimentos, se producen en él; sangre, células, tejidos y energía. La química no sólo está fuera, sino dentro de nuestro propio cuerpo.

Riesgos

En infinidad de ocasiones el hombre se ha interesado más por tener comodidades y la oportunidad de llevar una vida más “saludable”, sin considerar los riesgos que implica el disfrutar de estos satisfactores. Por ejemplo, nos resulta muy cómodo arrojar los desechos al drenaje, sin considerar que éstos desembocan en los ríos sin tratamiento alguno y que esto contribuye a la contaminación del agua. Recuerda: “El daño que le haces al planeta, te lo haces a ti mismo”.

Desplazarnos en automóvil propio es muy cómodo, pero cuando millones de personas lo hacen, la emisión de contaminantes a la atmósfera aumenta y se genera un peligro que puede ser mortal. Pero además, las necesidades de energía traen consigo mayores volúmenes de CO2 provocando un mayor calentamiento global del planeta.

Al desechar pilas eléctricas, acumuladores, se pueden contaminar los mantos freáticos, por elementos pesados como mercurio, plomo, cadmio, zinc, etc.

Además el uso indiscriminado de fertilizantes provoca la salinización de suelos y el uso de plaguicidas organofosforados puede ocasionar leucemia entre los habitantes cercanos a los campos agrícolas o entre los mismos trabajadores.
Actividad 1.19

Indaga en diversas fuentes electrónicas o bibliográficas, acerca del impacto que ha tenido el desarrollo y aplicación de la ciencia y la tecnología desde la revolución industrial hasta nuestros días.

__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
3. Procesamiento de la información

Actividad 1.20

En la siguiente tabla enlista los beneficios y riesgos de los siguientes productos químicos utilizados en el hogar.

<table>
<thead>
<tr>
<th>Producto químico</th>
<th>Beneficios</th>
<th>Riesgos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sosa cáustica</td>
<td>Se utiliza en la elaboración de pegamento y en la limpieza como destapacan y quitacochambre.</td>
<td>Es corrosivo y tóxico, cuando cae en la piel o en ojos debe lavarse con suficiente agua.</td>
</tr>
<tr>
<td>Hidróxido de sodio (Easy-off)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloralex (Hipoclorito de sodio)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol etílico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol de caña (Etanol)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinagre (Ácido acético)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ácido acetil salicílico (Aspirina)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecticida casa-jardín</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edulcorante (Aspartame)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refresco de cola</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Aplicación de la información

Actividad 1.21

Utiliza la información para dar respuesta a los siguientes cuestionamientos.

1. ¿En la agricultura qué riesgos trae consigo el uso de fertilizantes, plaguicidas e insecticidas?

__
__

2. ¿Qué beneficios se presentan al procesar y conservar alimentos enlatados?

__
__

3. ¿Qué riesgos trae consigo el uso de combustibles fósiles?

__
__

4. ¿Qué riesgos se presentan al usar agua embotellada en envases de plástico?

__
__

5. Los fármacos traen muchos beneficios para la salud, pero, ¿qué riesgos trae consigo la automedicación?

__
__

6. La ciencia es diferente a la tecnología, pero se complementan porque:

a) La tecnología consiste en la aplicación de los conocimientos científicos
b) La ciencia constituye un sistema de conocimientos verdaderos y relativos, en constante desarrollo.
c) La teoría y la práctica siempre están asociadas.
d) Todas son correctas

7. Los alimentos enlatados son convenientes porque:

a) Se conservan los alimentos sin descomponerse por un largo tiempo.
b) Permiten tener alimentos disponibles para su consumo en situaciones de emergencia (ciclones, temblores).
c) Se tienen disponibles productos perecederos en períodos en que no hay producción.
d) Todas son correctas
5. Autoevaluación

Actividad 1.22

En equipos de cinco integrantes elaboren un escrito donde expongan sus ideas y las medidas que deben tomarse para disminuir el deterioro ambiental. Cada equipo debe nombrar a un representante que dirija la discusión y de manera colaborativa elaboren el escrito que será expuesto en clase.

Es importante que todos participemos en la protección del ambiente; para ello es necesario adquirir una cultura química que nos permita comprender la naturaleza de las sustancias que lo alteran. El cambio climático, la disminución de la capa de ozono y el retroceso de la biodiversidad son problemas ambientales y ecológicos de alcance mundial, que requieren una decidida actuación conjunta.

Muchos mexicanos han destacado en la defensa y protección del ambiente, uno de ellos, es el escritor y columnista Ivan Restrepo, asimismo el Dr. Mario Molina, quien en conjunto con otros investigadores alertaron del daño que los clorofluorocarbonados ocasionan a la capa de ozono. Otro mexicano distinguido es el Dr. Ruy Pérez Tamayo, cuyo pensamiento humanista se muestra en la siguiente frase:

«El hombre forma parte de la naturaleza, por lo que en la medida que conozca mejor, también se conocerá mejor a sí mismo. El objetivo no es ni debe ser dominar a la naturaleza para explotarla en nuestro provecho, sino más bien entenderla mejor para integrarnos de manera más racional e inteligente a ella. La naturaleza incluye a nuestros semejantes, por lo que es de esperarse que con mayor conocimiento de sus características humanas podemos relacionarnos con ellos en forma más constructiva. En ese sentido, la ciencia es un instrumento de convivencia humana» [Pérez Tamayo, 2000: 308].
Autoevaluación

Actividad 1.23

Analiza cada una de las siguientes aseveraciones y fundamenta tu respuesta.

<table>
<thead>
<tr>
<th>Pregunta</th>
<th>Fundamentación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. El calentamiento global es un término que se utiliza para referirse al fenómeno del aumento de la temperatura media global de la atmósfera terrestre.</td>
<td></td>
</tr>
<tr>
<td>2. El principal efecto que causa el calentamiento global es el efecto invernadero.</td>
<td></td>
</tr>
<tr>
<td>3. Uno de los principales gases que provocan el efecto invernadero es el CO\textsubscript{2}.</td>
<td></td>
</tr>
<tr>
<td>4. El uso de insecticidas y plaguicidas en la agricultura trae consigo sólo beneficios.</td>
<td></td>
</tr>
<tr>
<td>5. El botulismo es una intoxicación que se puede presentar por consumir alimentos enlatados en mal estado y la presencia de la bacteria Clostridium. Botulinum.</td>
<td></td>
</tr>
<tr>
<td>6. El uso de combustibles fósiles no genera ningún peligro para el ambiente.</td>
<td></td>
</tr>
<tr>
<td>7. La automedicación en México empieza a reducirse por las medidas adoptadas por la Secretaría de Salud.</td>
<td></td>
</tr>
<tr>
<td>8. El arrojar pilas eléctricas a la basura no genera ningún riesgo.</td>
<td></td>
</tr>
<tr>
<td>9. Los envases de plástico pueden y deben ser reusados o reciclados.</td>
<td></td>
</tr>
</tbody>
</table>
La química y su relación con las demás ciencias

- Describe la relación de la química con otras ciencias.
- Indaga el campo de estudio de la química para establecer la relación de esta disciplina con otras ciencias.
- Valora la contribución de la química en su interrelación con el resto de las ciencias.

1. Problematización

La química encuentra relación con la física, la medicina, la biología, por mencionar algunas, pero, ¿qué relación encuentra con la matemática?

Actividad 1.24

Explora tus conocimientos previos a través de una lluvia de ideas y elabora un mapa tipo sol donde se muestre la relación de la química con las demás ciencias.
2. Adquisición y organización de la información

Actividad 1.25

En forma individual lee la información que se te proporciona acerca de la relación de la química con otras ciencias.

La química por su **objeto de estudio**, es una ciencia natural, y por su **método de estudio** es una ciencia experimental. En esta ciencia se estudian las sustancias, sus propiedades y las transformaciones que sufren éstas, al interactuar con la energía, para dar lugar a otras nuevas sustancias.

En esta ciencia la actividad experimental juega un papel importante en el proceso enseñanza-aprendizaje, como:

- Fuente de creación y recreación del conocimiento.
- Medio para comprobar la validez o no de una hipótesis.
- Un espacio para desarrollar habilidades y hábitos.
- Un recurso para despertar el interés hacia el estudio de las ciencias.

Mediante la actividad científica, se pueden desarrollar habilidades como la observación, formulación de preguntas, planteamiento de hipótesis, búsqueda de información, experimentación y contrastación de resultados con las teorías científicas.

A través del método científico la química busca aprovechar las propiedades y los cambios químicos de las sustancias para proporcionar satisfactores que mejoren nuestra salud y nuestras condiciones de vida.

El campo de aplicación de la química es muy amplio, pues los conocimientos químicos contribuyen a comprender fenómenos de la física, la biología, la astronomía, la agricultura, la investigación espacial, la geología, la medicina, la ciencia de los materiales y los problemas relacionados con el medio ambiente, entre otros.

Los límites o fronteras entre las diversas ciencias como la química, la biología y la física, empezaron a desaparecer desde hace muchos años, dando lugar a especialidades como la bioquímica, fisicoquímica, geoquímica, petroquímica, entre otras.

La interdisciplinariedad en el trabajo científico ha llevado a desarrollar nuevos campos de aplicación de las ciencias, entre ellos, la biología molecular, química ambiental, química nuclear, radioquímica, organometálica, ingeniería genética, toxicología, farmacología, ciencia de los materiales y últimamente la nanociencia.

Fig. 1.23 Modelo molecular.

Fig. 1.24 El nanómetro y su comparación.
Actividad 1.26

Indaga el campo de estudio y aplicaciones de las siguientes ramas de la química.

<table>
<thead>
<tr>
<th>Rama de la química</th>
<th>Campo de estudio</th>
<th>Aplicaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisicoquímica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioquímica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geoquímica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petroquímica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Química ambiental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Química nuclear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Química analítica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxicología</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Procesamiento de la información

Actividad 1.27

Elabora un mapa conceptual donde incorpores los conceptos que consideres relevantes sobre la química y su relación con las demás ciencias.

4. Aplicación de la información

La química encuentra relación con la física, la medicina, la biología, por mencionar algunas, pero, ¿qué relación encuentra con la matemática?
5. Autoevaluación

Actividad 1.28

Resuelve el siguiente crucigrama relacionado con las ramas de la química.

Relación de la química con otras ciencias

Horizontales
3. Rama de la física que estudia las propiedades físicas de la materia, su estructura y los procesos que intervienen en sus transformaciones, la energía, la velocidad de reacción, etc.
5. Rama de la química que estudia las dosis y los mecanismos de los efectos tóxicos que producen compuestos químicos.
6. Rama de la química que estudia los componentes de los seres vivos que participan en los procesos vitales como proteínas, carbohidratos, lípidos, ácidos nucléicos, etc.
7. Rama de la química que se encarga de identificar y cuantificar las sustancias presentes en una muestra material.
8. Rama de la química que se encarga del estudio de los componentes del petróleo para utilizarlos como materia prima en la obtención de productos químicos.

Verticales
1. Rama de la química que estudia la aplicación del conocimiento químico en la solución de problemáticas ambientales.
2. Rama de la química que estudia la composición y dinámica de los elementos químicos en la Tierra.
4. Rama de la química que estudia las reacciones nucleares que se presentan en los núcleos atómicos inestables.
El objeto de estudio de la química y sus niveles de representación.

- Describe el objeto de estudio de la química.
- Utiliza los niveles de representación de la química en la elaboración de sus hipótesis para explicar algunos de los fenómenos químicos que suceden en la vida diaria.
- Reflexiona sobre la importancia del estudio de esta disciplina.

1. Problematización

¿Cuál es el objeto de estudio de la química?

Actividad 1.29

Explora tus conocimientos previos, dando respuesta a las siguientes aseveraciones como falsas o verdaderas.

<table>
<thead>
<tr>
<th>Número</th>
<th>Aseveración</th>
<th>Verdadero (V)</th>
<th>Falso (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>El objeto de estudio de la química son las sustancias.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>2.</td>
<td>Las propiedades observables de una sustancia pertenecen al nivel submicroscópico.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>3.</td>
<td>En el nivel microscópico los tamaños de los objetos están en el rango de la micra.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>4.</td>
<td>Lo macroscópico está referido a aquello que podemos ver, palpar, medir, etc.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>5.</td>
<td>El nivel submicroscópico hace referencia a todas las representaciones, modelos o teorías asociadas a los átomos, iones o moléculas.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>6.</td>
<td>La fórmula CO₂ representa sólo a la molécula de bióxido de carbono, pero no a la sustancia.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>7.</td>
<td>El nivel simbólico representa tanto a lo macroscópico como a lo submicroscópico.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>8.</td>
<td>Las fórmulas y ecuaciones químicas pertenecen al nivel simbólico.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>9.</td>
<td>Las simbolías Co y CO representan a una misma sustancia.</td>
<td>F</td>
<td>V</td>
</tr>
</tbody>
</table>
2. Adquisición y organización de la información

Actividad 1.30

En forma individual lee la información que se te proporciona en relación con el objeto de estudio de la química y los niveles de representación.

Al mirar a nuestro alrededor posiblemente veamos cuerpos materiales de metal, plástico, vidrio y madera, entre otros. Todos estos cuerpos están constituidos de materia. El Dr. Plinio Sosa de la Facultad de Química de la UNAM, opina que: «si materia es todo lo que ocupa un lugar en el espacio, entonces, ¿una pirámide, los planetas, el cuerpo humano, un gorila, una computadora, un protón y un quark, son estudiados por la Química? ¿Tú qué opinas?

En realidad, el estudio de la química no abarca tanto. Entonces, ¿cuál es el campo de estudio de la química? Aún cuando se dice que la materia del universo es objeto de estudio de la química, es necesario precisar que la química es una ciencia cuyo objeto de estudio son las sustancias.

Pero, ¿qué son las sustancias?...

La química como ninguna otra disciplina científica, comprende conceptos que son completamente abstractos, que sirven para interpretar las propiedades macroscópicas de los cuerpos materiales y sus cambios.

Según Johnstone (1982), para conseguir una adecuada interpretación de cada uno de los conceptos químicos, es necesario abordarlos a nivel macroscópico, submicroscópico y simbólico.

Fig.1.25 Niveles de representación en química según Johnstone (1982).
Nivel macroscópico. A este nivel corresponden los conocimientos adquiridos a partir de la experiencia sensorial directa del mundo de los hechos o lo concreto. Está referido a todo aquello que podemos construir mediante la información proveniente de nuestros sentidos, basada en propiedades organolépticas, visuales, auditivas y táctiles.

Por ejemplo, el cloruro de sodio es un sólido cristalino, quebradizo.

Nivel submicroscópico. En este nivel se hace referencia a las representaciones abstractas que un individuo tiene en su mente, asociadas por ejemplo, a esquemas de átomos, moléculas, e iones. Pertenece al mundo de los modelos y las teorías. En química es común el uso de modelos físicos y de representación asistida por computadora, para interpretar los cambios que ocurren en la naturaleza.

Por ejemplo, el cloruro de sodio forma una red cristalina de iones sodio \(\text{Na}^+ \) e iones cloruro \(\text{Cl}^- \).

Nivel simbólico. Este nivel representa el mundo del lenguaje y de los símbolos, involucra formas de expresar conceptos químicos mediante fórmulas, ecuaciones químicas, expresiones matemáticas, gráficos entre otras. Es de lo más abstractos, pues en él se utilizan símbolos químicos para describir lo que sucede en una reacción química a nivel submicroscópico.

Por ejemplo, la fórmula del cloruro de sodio es \(\text{NaCl} \).

A continuación se muestra un ejemplo del uso de estos tres niveles de representación para las sustancias: agua y aluminio.

<table>
<thead>
<tr>
<th>Nivel macroscópico</th>
<th>Nivel submicroscópico</th>
<th>Nivel simbólico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustancia agua</td>
<td>Modelo que representa a la molécula de agua</td>
<td>(\text{H}_2\text{O})</td>
</tr>
<tr>
<td>Sustancia aluminio</td>
<td>Modelo que representa la red de átomos de aluminio</td>
<td>(\text{Al})</td>
</tr>
</tbody>
</table>
3. Procesamiento de la información

Actividad 1.31

Elabora un mapa conceptual donde organices la información sobre el objeto de estudio de la química y sus niveles de representación.
4. Aplicación de la información

Actividad 1.32

Completa el cuadro comparativo con los tres niveles de representación de cada una de las sustancias indicadas.

<table>
<thead>
<tr>
<th>Sustancia</th>
<th>Nivel macroscópico</th>
<th>Nivel submicroscópico</th>
<th>Nivel simbólico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etanol</td>
<td>El etanol es una sustancia líquida, volátil, incolora, flamable y de olor característico.</td>
<td>La sustancia etanol está constituida por moléculas de etano.</td>
<td>La fórmula CH₃CH₂OH representa tanto a la sustancia como a la molécula de etanol.</td>
</tr>
<tr>
<td>Azufre</td>
<td>El azufre es un elemento químico de color amarillo, sólido, insoluble en agua de olor característico.</td>
<td>La configuración electrónica del átomo de azufre es: (Ne) 3s² 3p⁴ Sus moléculas forman anillos de seis a ocho átomos.</td>
<td>El símbolo S representa tanto al átomo, como al elemento azufre, mientras que la fórmula S₈ representa a la molécula y al elemento azufre.</td>
</tr>
<tr>
<td>Hierro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bióxido de carbono</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacarosa (Azúcar de caña)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Autoevaluación

Actividad 1.33

Elabora un escrito donde reflexiones acerca de la importancia del estudio de la química en el bachillerato para la formación de ciudadanos responsables y comprometidos con el ambiente.

__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
Autoevaluación

Actividad 1.34

Resuelve el siguiente crucigrama que aborda el objeto de estudio de la química y sus niveles de representación.

Niveles de representación

1. Ciencia que estudia las sustancias, sus propiedades y transformaciones.
3. Este nivel está relacionado con la forma de expresar los conceptos a través de fórmulas, ecuaciones químicas, etc.
4. Cuerpos homogéneos constituidos de un mismo componente, que pueden ser elementos o compuestos.
5. A este nivel corresponden las modelizaciones o abstracciones que el ser humano construye para interpretar y explicar los cambios que ocurren en la naturaleza.
6. Son el objeto de estudio de la química.

Horizontales

2. A este nivel corresponden los conocimientos adquiridos a partir de la experiencia sensorial.

Verticales
¿Por qué modelamos en química?

- Describe su noción de modelo.
- Utiliza modelos para explicar las características observables y no observables de las sustancias.
- Valora la importancia de los modelos en la explicación de las propiedades de las sustancias.

1. Problematización

Actividad 1.35

Mediante una lluvia de ideas da respuesta a los siguientes cuestionamientos.

¿Por qué modelamos en química?

__
__
__

¿Qué es un modelo?

__
__
__

Si el azufre es de color amarillo, ¿sus átomos son de color amarillo?

__
__
__

¿Los colores utilizados para representar a los átomos en los modelos, son en realidad sus colores?

__
__
__

¿Por qué los átomos no pueden tener color?

__
__
__
Actividad 1.36

En forma individual lee la información que se te proporciona para encontrar respuesta a la pregunta central, ¿por qué modelamos en química?

Al observar una muestra de agua esta se puede caracterizar como líquida, incolora e inodora e incluso se puede medir su punto de ebullición, de fusión o de congelación. Sin embargo, aún no es posible observar a las moléculas individuales, debido a su tamaño tan pequeño. Por ejemplo, en una gota de agua existen aproximadamente 1670 trillones de moléculas de agua. Ahora te explicas por qué la necesidad de utilizar modelos de representación para los átomos y moléculas.

Los modelos en química ayudan a visualizar lo que macroscópicamente no se puede observar.

Un *modelo* es una representación mental que nos permite explicar teóricamente las características observables de las sustancias.

Es importante reconocer que el nexo entre teoría y realidad siempre se encuentra mediado por algún modelo. En química, se busca explicar a nivel submicroscópico lo que macroscópicamente se observa o percibe, para ello, se elaboran o utilizan modelos que nos permiten representar e interpretar esa realidad. Se usan, cuando en la práctica, es imposible determinar la naturaleza y propiedades de los componentes de un sistema real bajo estudio y se propone a nivel submicroscópico cierta estructura interna y se definen las relaciones entre los componentes de tal estructura. Por ejemplo, aún cuando los átomos no tienen color, se utilizan colores para representarlos.

Consideremos algunos modelos para diferenciar a elementos, compuestos y mezclas a partir de sus componentes.

a) Cada color representa a un átomo (partícula).

b) Cada color diferente, indica un átomo diferente.

c) Cuando se muestran partículas unidas del mismo color, representan a moléculas de un mismo elemento.

d) Los elementos se representan por conjuntos de átomos de un mismo color, y pueden ser monoatómicos, diatómicos o poliatómicos.

e) Cuando se muestran dos o más partículas unidas de diferente color, representan a una molécula o a una celda unitaria de un compuesto.

f) Los compuestos se representan por conjuntos de moléculas o celdas unitarias, con átomos diferentes (diferente color).

g) Las mezclas se representan por conjuntos de átomos y/o moléculas diferentes sin presentar unión entre ellas.
Actividad 1.37

Indaga ¿cuáles son los colores convencionales utilizados en la representación atómica?

<table>
<thead>
<tr>
<th>Átomo</th>
<th>Color</th>
<th>Átomo</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Completa la siguiente tabla e identifica por el tipo de partícula a los elementos, compuestos y mezclas en cada uno de los modelos que se muestran con anterioridad.

<table>
<thead>
<tr>
<th>No. de modelo</th>
<th>¿Se representan átomos o moléculas?</th>
<th>¿Todos los átomos son idénticos?</th>
<th>¿Todas las moléculas son idénticas?</th>
<th>¿Se representa a un elemento, compuesto o mezcla?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Aplicación de la información

Actividad 1.39

Dibuja un modelo que represente a los gases nobles y otro que represente al cloruro de sodio en su forma sólida u otro compuesto iónico.

Gases nobles

Cloruro de sodio

Actividad 1.40

Elabora modelos de sustancias moleculares y reticulares utilizando esferas, palillos o limpiapipas y muestra los productos a toda la comunidad escolar.

Fig. 1.26 Modelos moleculares elaborados por alumnos y alumnas de la Unidad Académica Preparatoria Emilianno Zapata.
5. Autoevaluación

Actividad 1.41

Resuelve el siguiente crucigrama relacionado con el tema del uso de modelos en la química.

¿Por qué modelamos en química?

Horizontales
3. Grupo de sustancias que se representan por un conjunto de átomos y moléculas diferentes sin presentar unión química entre ellas.
6. Son representaciones mentales que nos permiten explicar submicroscópicamente las características observables de las sustancias.

Verticales
1. Para representar a esta sustancia se utilizan conjuntos de esferas idénticas (del mismo color), aisladas o cohesionadas.
2. Se pueden representar por un conjunto de átomos idénticos (del mismo color) sin cohesión entre ellos.
4. Se representa por un conjunto de moléculas idénticas e individuales, pero formadas por átomos distintos (esferas de diferente color).
5. Tipo de compuesto que para explicar sus propiedades macroscópicas se utiliza un modelo de iones positivos y negativos, formando una red cristalina.
Elabora tu proyecto: inicia la indagación

- Describe la metodología a utilizar en el diseño de un proyecto de investigación.
- Identifica su objeto de estudio.
- Se asume como una persona responsable y ordenada al realizar su anteproyecto de investigación.

En química, hemos considerado pertinente que desde esta unidad temática el estudiante inicie la elaboración de un proyecto de investigación, el cual debe ser consensuado por los miembros del equipo y del interés colectivo. Abajo se muestra un formato que permite orientar el diseño del proyecto en sus cuatro fases: planeación, desarrollo, comunicación y evaluación.

Actividad 1.42

De manera colaborativa elige el objeto de estudio, es decir, qué investigar.

PLANEACIÓN DE UN PROYECTO

<table>
<thead>
<tr>
<th>Nombre del Proyecto:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unidad Académica:</th>
<th>Asignatura:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fecha de inicio:</th>
<th>Fecha de término:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJETIVO(S) DEL PROYECTO

1.
2.
3.
4.

Contexto donde se desarrollará:

Disciplinas que intervienen en el proyecto:

Descripción del proyecto a realizar:
Fases del proyecto

Fase de planeación

En esta fase el equipo adquiere y organiza la información sobre el tema. Se proponen las estrategias y actividades que permitan el logro de los objetivos. Al procesar la información el equipo puede construir las preguntas de investigación y las posibles hipótesis.

(Las preguntas y las hipótesis serán planteadas como producto de la unidad temática II).

Una hipótesis es una suposición lógica y constituye una respuesta tentativa o posible que permite explicar lo observado. En las ciencias naturales las hipótesis ayudan a orientar la investigación o las siguientes fases del proyecto. Para comprobar la validez de una hipótesis es necesario realizar un experimento que la compruebe o la refute.

Fase de desarrollo:

En esta fase el equipo deberá realizar todo lo planeado. Se debe supervisar que el proyecto se realice de acuerdo a lo planeado y registrar adecuadamente los avances del mismo. Es importante recolectar las evidencias de la investigación e integrarlas al portafolio para el informe final.

Fase de comunicación:

En este momento se procesan y analizan los resultados para ser presentados ante el grupo, la escuela o comunidad. El informe del proyecto deberá contener: portada, introducción, objetivos, hipótesis (en caso de haberlas), desarrollo del proyecto (explicación de la forma como se dio el proceso), resultados (si hay datos numéricos, es necesario organizarlos a través de tablas o gráficas que faciliten su análisis), conclusiones y bibliografía utilizada.

Los resultados del proyecto se pueden dar a conocer a través de folletos, trípticos, presentación power point, maqueta, modelos, etc.

Es importante para el buen término del proyecto, el liderazgo y el trabajo en equipo.

Fase de autoevaluación

En esta fase se sugiere que se de respuesta por escrito a algunas preguntas sobre el proyecto: ¿qué aprendí al realizar el proyecto? ¿cómo lo aprendí? ¿se lograron alcanzar los objetivos planteados al inicio del proyecto? ¿qué otro proyecto se puede plantear a partir de éste?
Diagrama de flujo para la elaboración del proyecto de investigación.

PROYECTO DE INVESTIGACIÓN

- Formulación del problema
 - Definir área temática
 - Elaborar preguntas de investigación
 - Adquirir y organizar la información
 - Delimitación del tema
 - Planteamiento de actividades y estrategias para el desarrollo de competencias. Plantear hipótesis.
 - Formulación del marco teórico
 - Diseño del experimento
 - Técnica de recolección y registro de datos y evidencias (fotografías, tablas, gráficas)
 - Desarrollo: realizar lo planeado
 - Se procesa e integra la información
 - Datos
 - Procesamiento de datos
 - Síntesis y conclusiones
ACTIVIDAD EXPERIMENTAL 1

Conocimiento y uso del material más común en el laboratorio

Competencia a desarrollar:

• Utiliza adecuadamente el material de uso común en el laboratorio, en la medición de ciertas magnitudes físicas, como la masa, peso, temperatura y volumen.

Actividades previas

1. Dibuja los materiales de uso más común en el laboratorio de química, menciona su nombre y aplicación: pinzas para tubo, gradilla, tubo de ensayo, mechero de Bunsen, soporte universal con aro, malla de alambre con asbesto, matraz Erlenmeyer, matraz Kitazato, matraz de destilación, matraz aforado, vaso de precipitado, embudo, embudo de separación, cápsula de porcelana, mortero con pistilo, termómetro, pipeta, probeta, bureta, pizeta, agitador de vidrio, balanza granataria, escobillón.

2. Indaga en diferentes fuentes, las siguientes propiedades físicas: punto de ebullición, punto de fusión, solubilidad, masa, peso y volumen. Además, establece las diferencias entre calor y temperatura, masa y peso.

Desarrollo de la práctica

Haciendo uso del material adecuado, realiza las siguientes mediciones:
 • Determinación del punto de ebullición del agua.
 • El número de gotas contenidas en un mililitro y el volumen que ocupa una gota de agua.
 • El tiempo que tarda en disolverse una sustancia en forma pulverizada y en su forma compacta.

Te proponemos que utilices tu ingenio e iniciativa para el diseño de los experimentos a realizar en cada una de las mediciones así como el material a utilizar. Cuando haya riesgo en el manejo de alguno de estos materiales o sustancias, tu profesor te lo advertirá claramente.

Actividad No.1

Determinación del punto de ebullición del agua

1. ¿Qué materiales y sustancias utilizarás para llevar a cabo esta medición?

<table>
<thead>
<tr>
<th>1. Materiales y sustancias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
¿A qué temperatura consideras que hierva el agua?

2. Hipótesis de trabajo

3. Diseña el experimento, dibuja el montaje y los materiales a utilizar.

3. Diseño experimental

Observaciones.

4. Registro de datos

5. Resultados.
¿Se confirmó tu hipótesis? Argumenta tu respuesta.

Al utilizar diferentes volúmenes de agua y repetir el proceso de medición, ¿encontraste alguna variación en el punto de ebullición del agua?

6. Conclusiones
Actividad 2

Medición del número de gotas contenidas en 1 mL de agua.

1. ¿Qué materiales y sustancias utilizarás para llevar a cabo esta medición?

<table>
<thead>
<tr>
<th>1. Materiales y sustancias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

¿Cuántas gotas estarán contenidas en 1 mL de agua? ¿Qué volumen ocupa aproximadamente una gota de agua?

2. Hipótesis de trabajo

Diseña tu propio experimento, dibuja el montaje que harías y los materiales que deberás utilizar.

3. Diseño experimental

Observaciones. Para el cálculo del número de gotas contenidas en un mL se recomienda realizar mínimamente cinco mediciones y calcular el promedio para minimizar el error.

4. Registro de datos

5. Resultados.

¿Se confirmó tu hipótesis? Argumenta tu respuesta.

¿Cuál es el promedio de gotas de agua contenidas en un mL de las mediciones realizadas?

¿Cuál es el volumen que ocupa aproximadamente una gota de agua?

6. Conclusiones
Actividad 3

Solubilidad de una sustancia en agua, en función de su superficie de contacto.

1. ¿Qué materiales y sustancias utilizarás para llevar a cabo esta observación y medición?

<table>
<thead>
<tr>
<th>1. Materiales y sustancias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

¿Cuál esperas que se disuelva primero? ¿De qué manera influye en la solubilidad de una sustancia, el tamaño de la partícula?

<table>
<thead>
<tr>
<th>2. Hipótesis de trabajo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Diseña el experimento, dibuja el montaje.

<table>
<thead>
<tr>
<th>3. Diseño experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Observaciones.

<table>
<thead>
<tr>
<th>4. Registro de datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo de disolución</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

5. Resultados.

¿Se confirmó tu hipótesis? Argumenta tu respuesta.

¿Qué otros factores afectan la solubilidad de las sustancias?

<table>
<thead>
<tr>
<th>6. Conclusiones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
ACTIVIDAD EXPERIMENTAL 2
Del conocimiento empírico al conocimiento científico

Competencia a desarrollar:

• Utiliza los niveles de representación de la química en la elaboración de sus hipótesis para explicar algunos de los fenómenos químicos que suceden en la vida diaria.

Actividades previas

• Indaga la composición química y propiedades de la cáscara de huevo, el vinagre y el agua. Investiga la reacción que se lleva a cabo al poner en contacto vinagre y carbonato decalcio.

1. ¿Qué materiales y sustancias utilizarás para llevar a cabo esta observación?

<table>
<thead>
<tr>
<th>1. Materiales y sustancias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Preguntas problematizadoras

¿Qué pasará si colocamos un huevo en agua y otro en vinagre?
¿Qué cambios macroscópicos se observan?
¿Cómo explicarías submicroscópicamente lo que sucede?
¿Cómo representarías simbólicamente este cambio?
¿Cómo clasificarías el tipo de cambio observado?

<table>
<thead>
<tr>
<th>2. Hipótesis de trabajo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Diseña el experimento, dibuja el montaje y los materiales a utilizar.

<table>
<thead>
<tr>
<th>3. Diseño experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Observa y registra lo que sucede en cada experimento diseñado.

<table>
<thead>
<tr>
<th>4. Registro de datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huevo en agua</td>
</tr>
</tbody>
</table>

¿Se confirmaron tus hipótesis? Argumenta tu respuesta.
¿El huevo sumergido en vinagre, flotó? Si tu respuesta es afirmativa, a qué consideras tal fenómeno? ¿Observaste la formación de burbujas en el huevo colocado en vinagre? Si tu respuesta es afirmativa, a qué consideras tal fenómeno? ¿Qué formula química y nombre tiene la sustancia liberada? ¿Qué otros productos se forman en la reacción entre el vinagre y la cáscara de huevo? ¿Si en vez de utilizar vinagre se hubiera utilizado coca-cola, consideras que hubiera sucedido lo mismo?

<table>
<thead>
<tr>
<th>5. Resultados</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6. Conclusiones</th>
</tr>
</thead>
</table>
Los cuerpos materiales de la vida cotidiana: su composición, cambios y propiedades
Competencia de unidad

Explica la estructura y los cambios que experimentan las sustancias haciendo uso de los principios de la teoría cinética-molecular y los niveles de representación de la química.

La materia: ¿continua o discontinua?

- Reconoce la naturaleza discontinua y corpuscular de la materia.
- Utiliza el modelo corpuscular y los principios de la teoría cinética-molecular en la explicación de la estructura y cambios de estado de agregación de las sustancias.
- Valora la importancia del uso de los niveles de representación para explicar el comportamiento de la materia.

1. Problematización

¿Cuál es tu noción de materia, cuerpo material y sustancia?
__
__

Actividad 2.1

Explora tus conocimientos previos, dando respuesta a los siguientes cuestionamientos.

1. Noción de materia: ___
__

2. Noción de cuerpo material: ___
__

3. Noción de sustancia: ___
__

4. El siguiente esquema representa con círculos las partículas que forman el aire que respiramos, ¿qué hay entre dichas partículas?

 a) Polvo
 b) Nada
 c) Otras partículas más ligeras
 d) Tengo duda

79
2. Adquisición y organización de la información

Actividad 2.2

En forma individual lee la información que se te proporciona, misma que te permitirá dar respuesta a la interrogante planteada: la materia ¿continua o discontinua?

El término «materia» se utiliza de manera general para designar a la gran diversidad de cuerpos materiales que existen en la vida cotidiana. Este término engloba a todos los cuerpos, objetos y seres que existen en la naturaleza. El Dr. Plinio Sosa (2005), ha expresado que el término «materia» induce a pensar que todo está hecho de una misma «pasta», y que todas las sustancias y materiales que conocemos o que sabemos que existen, no son más que diferentes presentaciones de esa única “pasta” llamada materia.

Cada cuerpo material tiene una composición química diferente, a menos que estos sean del mismo tipo y posean los mismos componentes. La forma como están agrupados estos componentes, ha sido objeto de análisis desde la Grecia antigua, cuyo cuestionamiento principal era, si ésta es de naturaleza continua o discontinua. ¿Tú, qué piensas? ¿Cómo observas la materia?

Macroscópicamente, los componentes de los cuerpos materiales son las sustancias. Cada sustancia posee características propias que la distinguen de las demás. Cada una de ellas, está constituida submicroscópicamente de partículas químicas, sean átomos, iones o moléculas. John Dalton en 1808, basándose en las ideas de Leucipo y Demócrito postuló que la materia se compone de partículas muy pequeñas para ser vistas, llamadas átomos. Más allá de las apariencias, se encuentran en constante movimiento e interacción y sólo son visibles cuando se agrupan algunos trillones de ellas. Volvamos a la pregunta inicial, ¿es la materia de naturaleza continua o discontinua?

Conozca más ... sobre la teoría cinético molecular

Los estudios realizados por Robert Boyle en el siglo XVII sobre el comportamiento y las propiedades de los gases, fueron utilizados a mitad del siglo XIX por los físicos Ludwig Boltzmann y James Clerk Maxwell para formular la teoría cinético molecular. Esta teoría nos permite explicar el comportamiento y las propiedades de los sólidos, líquidos y gases, con base en los siguientes postulados:
1. Toda la materia está constituida por partículas, que pueden ser átomos, iones o moléculas.
2. Las partículas se encuentran en movimiento continuo, de vibración y/o de traslación (aleatorio).
3. Entre las partículas no hay nada, sólo vacío.
4. Existen fuerzas de interacción entre las partículas, denominadas de cohesión.
5. Las colisiones entre las partículas son elásticas, chocan, rebotan y se alejan. Este modelo cinético-corporcular nos permite dar una representación submicroscópica que ayuda a explicar los hechos observados por medio de nuestros sentidos, sobre los cuerpos macroscópicos.

El Dr. Plinio Sosa (2005) al explicar la relación que existe entre sustancia y partícula, hace uso de la analogía: manada es a búfalo, como sustancia es a partícula.

Visto de esa manera, una sustancia se encuentra en el nivel de lo macroscópico, mientras que la partícula en el nivel de lo submicroscópico.

Fig. 2.1 Manada de búfalos en la pradera.

Fig. 2.2 Búfalo

Actividad 2.3

Indaga en diversas fuentes electrónicas o bibliográficas, el significado de materia, cuerpo material y sustancia.

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Definición</th>
<th>Fuente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuerpo material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustancia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Procesamiento de la información

Actividad 2.4

En el siguiente mapa conceptual inserta los conceptos y palabras clave: Sustancias, Átomos, Partículas, Moléculas, Iones, Ludwig Boltzmann y James Clerk Maxwell, Teoría cinético-molecular, Cuerpos materiales.
4. Aplicación de la información

El aire aunque no lo vemos, lo sentimos y lo respiramos, sus partículas en movimiento chocan entre sí y golpean nuestro cuerpo. Cuando decimos aire, nos referimos a la mezcla de gases que lo componen.

Actividad 2.5

Da respuesta a nuevas interrogantes.

En el mundo de las apariencias, el aire se ve como un continuo, pero esta idea se descarta cuando al observar un rayo luminoso desde un lugar oscuro, se aprecian partículas de polvo suspendidas. ¿Qué hay entre dichas partículas de polvo? Nuestra respuesta sería, partículas de varios gases, Pero, ¿qué hay entre las partículas de los gases? Polvo, nada o otras partículas más ligeras.

5. Autoevaluación

¿Qué aprendí?

<table>
<thead>
<tr>
<th>Pregunta</th>
<th>Respuesta</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Por qué la materia es discontinua?</td>
<td></td>
</tr>
<tr>
<td>¿En qué proporción se encuentran las partículas de nitrógeno en el aire?</td>
<td></td>
</tr>
<tr>
<td>¿Qué existe entre las partículas?</td>
<td></td>
</tr>
<tr>
<td>¿Qué partículas están en mayor proporción en el aire?</td>
<td></td>
</tr>
<tr>
<td>La materia además de estar constituida por átomos, puede estar constituida por</td>
<td></td>
</tr>
</tbody>
</table>
Autoevaluación

Actividad 2.6

Resuelve el siguiente crucigrama.

Horizontales
2. Se definen como cuerpos materiales homogéneos constituidos por un mismo tipo de componentes.
5. Sustancia que se encuentra en mayor proporción en el aire.
6. Teoría en la que se plantea que las partículas se encuentran en movimiento continuo y aleatorio.
7. ¿La materia es de naturaleza continua o discontinua?

Verticales
1. Propuso en 1808 la teoría atómica moderna.
2. Son los componentes macroscópicos de todo cuerpo material.
3. Entre los componentes submicroscópicos de una sustancia o mezcla de sustancias, siempre existe...
4. Es uno de los que formularon la teoría cinético molecular.
Los cuerpos materiales de tu entorno: ¿cómo los clasificas?

- Describe los estados de agregación y la composición en que se presentan los cuerpos materiales de nuestro entorno.
- Compara los estados de agregación de los cuerpos materiales por sus características macroscópicas y submicroscópicas y los clasifica por su composición.
- Muestra interés por indagar la posible existencia de un mayor número de estados de agregación de la materia y de qué están hechas las cosas que lo rodean.

1. Problematización

¿Para ti, qué puede ser considerado como homogéneo y como heterogéneo?
__
__
__

Actividad 2.7

Explora tus conocimientos previos, dando respuesta a los siguientes cuestionamientos.

¿Qué es un cuerpo homogéneo?__
__
__

¿Qué es un cuerpo heterogéneo?___
__
__

2. Adquisición y organización de la información

Actividad 2.8

En forma individual lee la información que se te proporciona acerca de los cuerpos materiales y su forma de clasificarlos.

La materia se nos presenta en muy diversas formas en la naturaleza, formando cuerpos materiales homogéneos y heterogéneos. Observa a tu alrededor y encontrarás muchos de ellos, algunos de metal, otros de plástico, madera, vidrio, papel, cerámica, la mayor parte de ellos en forma sólida, pero también existen en su forma líquida y gaseosa.

Fig. 2.3 Materiales diversos.

Fig. 2.4 Granito.
Un **cuerpo material** se puede definir como toda porción limitada de materia, cuyos componentes se observan a la vista en una o más fases, presentándose como homogéneo o heterogéneo. Para una mejor clasificación de los cuerpos materiales, no ayuda a resolver el problema clasificarlos sólo como homogéneos y heterogéneos. Es necesario considerar más aspectos de su composición.

En la naturaleza, la mayor parte de los cuerpos materiales homogéneos y heterogéneos que encontramos en ella, son mezclas de sustancias, ejemplo de ello, tenemos, el suelo, el aire, así como el agua de ríos, lagos y mares. Las sustancias elementales como la plata, aluminio, cobre, entre otras, no se encuentran aisladas en la naturaleza con un alto grado de pureza, a excepción del oro.

Desde tiempos remotos el ser humano ha tenido que aprender a separar sustancias de los cuerpos materiales. En la historia de la química encontramos a los alquimistas quienes tras la búsqueda de la «piedra filosofal» proporcionaron diversas técnicas de destilación, filtración, decantación, cristalización, entre otras, para separar los componentes de los materiales.

Como producto de la separación de los cuerpos materiales en sus componentes y la síntesis de nuevas sustancias y nuevos materiales hoy tenemos más de 54 millones de sustancias orgánicas e inorgánicas. ¿Cómo clasificarlas?

Tradicionalmente los cuerpos materiales se han clasificado utilizando dos criterios fundamentales: por su composición y por su estado de agregación.

Clasificación por su composición

Los **cuerpos homogéneos** son de dos tipos: **sustancias** o **mezclas homogéneas** (también denominadas disoluciones). Mientras que los **cuerpos heterogéneos** son **mezclas heterogéneas**. Las sustancias son de dos tipos: elementos y compuestos. Existen elementos monoatómicos (He, Ne, Ar, Kr, Xe, Rn, Fe, Zn, Cu, etc.), diatómicos (Br₂, Cl₂, F₂, O₂, N₂, H₂) y poliatómicos (O₃, P₄, S₈). Existen compuestos binarios (HCl, H₂O, NaCl, CaO), ternarios (H₂SO₄, CuSO₄, HNO₃, Ca(OH)₂, etc.) y cuaternarios (HSCN, C₂H₄N₂O, etc.) aunque existen otros compuestos mucho más complejos y con mayor número de elementos en su composición, como los compuestos de coordinación, los cuáles no son abordados en este nivel.

Ejemplos de **mezclas homogéneas** o **disoluciones**, tenemos el azúcar o sal en agua, anticongelante para automóviles (etilenglicol en agua), vinagre (ácido acético en agua), gasolina (octano, antidetonante), latón (aleación de cobre y zinc), por mencionar algunas. Como mezclas heterogéneas tenemos al granito, la tierra, aceite y agua, entre otras.

A manera de conclusión podemos señalar, que una **sustancia** es un cuerpo material homogéneo constituido por un sólo tipo de componente y que posee propiedades específicas que la distinguen de las demás. Las sustancias son elementos o compuestos.
Elementos químicos

Para lograr la comprensión actual de elemento químico, fue necesario el esfuerzo y el trabajo de muchos científicos. Uno de ellos fue el aporte del químico inglés Robert Boyle quien en 1661 en su libro *The Sceptical Chymist*, definió a los elementos como *sustancias que no pueden ser descompuestas en sustancias más simples*. La definición de Boyle tenía un sentido práctico, pues una sustancia podía ser considerada un elemento, hasta el momento en que se descubriese cómo transformarla en otras más simples.

En el siglo XVIII Antoine L. Lavoisier sobre la base de la definición de Boyle propuso una definición de *elemento* para aquellas sustancias *que no podían ser descompuestas en otras más sencillas mediante procedimientos químicos conocidos*.

Otro científico que aportó a la evolución conceptual de elemento fue el químico inglés John Dalton, quien en 1803 relacionó el concepto macroscópico de sustancia simple con su interpretación en términos corpusculares o submicroscópicos. Definió al *elemento* como un *conjunto de átomos exactamente iguales entre sí, en cuanto a masa y propiedades*.

En la actualidad, con la determinación del número atómico y el descubrimiento de los isótopos, se define a los *elementos* como:

Sustancias constituidas por un conjunto de átomos del mismo número atómico. Por tanto, tienen el mismo número de protones en el núcleo de sus átomos y por consiguiente el mismo número de electrones.

Hasta el momento se conocen 116 elementos químicos, de los cuales tan sólo 10 de ellos constituyen casi el 99% de lo que existe en la corteza terrestre.

Los *compuestos* son sustancias que resultan de la unión o combinación química de dos o más elementos diferentes en proporciones fijas (definidas o constantes). En función del número de elementos constituyentes se les clasifica como binarios, ternarios, etc. Cada compuesto tiene una fórmula química que nos indica estas proporciones.

Los compuestos son covalentes o iónicos. La parte representativa de un compuesto covalente es la *molécula*. La parte representativa de un compuesto iónico es la *celda unitaria*.

Las moléculas o celdas unitarias de un compuesto son iguales y están constituidas por átomos o iones diferentes.

Una *molécula*, se define como la partícula más pequeña que resulta de la unión química de dos o más átomos, iguales o diferentes. Esta entidad es eléctricamente neutra y mantiene las mismas propiedades químicas de la sustancia, sea ésta, elemento o compuesto.
Dependiendo de su aspecto, las mezclas se clasifican en homogéneas y heterogéneas. Las **mezclas homogéneas**, son cuerpos materiales constituidos por dos o más sustancias, que a simple vista se observan en una sola fase.

Se denomina **fase**, a toda porción de materia que posee composición y propiedades distintas a las otras partes del sistema. Por ejemplo, en la leche se observa una sola fase y en la mezcla agua y aceite, se presentan dos fases distintas.

Una **mezcla heterogénea** se define como un cuerpo constituido por dos o más sustancias, que a simple vista se distinguen o se aprecian dos o más fases distintas. Macroscópicamente las mezclas se clasifican en homogéneas y heterogéneas. Sin embargo, submicroscópicamente ambas son heterogéneas, porque están formadas por partículas de sustancias diferentes, por tanto, en una mezcla habrá más de un tipo de partícula.

Conozca más ...

Métodos de separación de mezclas

Una de las diferencias entre los compuestos y las mezclas, es que sus componentes se pueden separar por métodos físicos, mientras que en los compuestos sólo se pueden separar por métodos químicos.

A continuación se muestran algunos métodos y los principios en que se basan.

<table>
<thead>
<tr>
<th>Método</th>
<th>Principios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtración</td>
<td>Diferencia de solubilidad del soluto en el disolvente</td>
</tr>
<tr>
<td>Destilación</td>
<td>Diferencia en el punto de ebullición</td>
</tr>
<tr>
<td>Decantación</td>
<td>Diferencia de solubilidad del soluto en el disolvente</td>
</tr>
<tr>
<td>Centrifugación</td>
<td>Uso de la fuerza centrífuga para separar partículas suspendidas</td>
</tr>
<tr>
<td>Cromatografía</td>
<td>Diferencia de movilidad de las partículas a través de la fase estacionaria</td>
</tr>
<tr>
<td>Cristalización</td>
<td>Diferencia de solubilidad en disolventes a baja y alta temperatura</td>
</tr>
</tbody>
</table>

Filtración

La filtración es un método físico que se utiliza para separar mezclas heterogéneas, sólido-líquido insolubles. Consiste en utilizar un medio poroso, que puede ser papel filtro, algodón, malla, barro, etc., en el cual es retenido el sólido y permite el paso del líquido.
Destilación
La destilación es un método físico de separación de mezclas homogéneas líquido-líquido y sólido-líquido solubles. Se basa en utilizar la diferencia en los puntos de ebullición de las sustancias mezcladas. En este proceso ocurren dos cambios físicos: la evaporación y la condensación. La mezcla se calienta hasta el punto de ebullición y los vapores se enfrian en el condensador o refrigerante.

Decantación
La decantación es un método físico que consiste en separar mezclas heterogéneas líquido-líquido y líquido-sólido inmiscibles es decir, insolubles uno en el otro. Para separar la mezcla líquido-sólido, se espera a que el sólido se deposite en el fondo del recipiente, para vaciar el líquido en otro recipiente, evitando el paso del sólido.

Centrifugación
La centrifugación es un método físico que se utiliza en la separación de una mezcla de un sólido insoluble en un líquido y de difícil o lenta sedimentación, aprovechando la fuerza centrífuga producida por la rotación de los tubos de ensayo, que provoca a su vez la separación de las partículas sólidas y un líquido clarificado.

Cromatografía
La cromatografía es un método físico de purificación y separación de sustancias presentes en mezclas homogéneas o heterogéneas, que consiste en utilizar el principio de adsorción, que se presenta cuando las partículas de un sólido, líquido o gas, se adhieren a la superficie de un sólido la cual es denominada fase fija o estacionaria (llamada adsorbente). Para que los componentes de la mezcla se separen sobre el adsorbente se requiere una fase móvil o disolvente también denominado eluyente.

Hay varios tipos de cromatografía; entre ellas tenemos, a la cromatografía en papel, en columna, en capa fina, de líquidos y de gases.
La cristalización es un método que nos permite separar un sólido que es soluble en un líquido determinado. Consiste en el calentamiento de una mezcla formada por un sólido disuelto en un líquido y la posterior evaporación del líquido hasta lograr una disolución sobresaturada, la cual por enfriamiento se recristaliza.

Por su estado de agregación

A las formas como se presentan los cuerpos materiales, se les denomina estados de agregación, por la forma como se «agregan» las partículas. Los estados de agregación más familiares por la experiencia cotidiana, son el sólido el líquido y el gaseoso, fácilmente diferenciables por sus propiedades.

Sin embargo, existen otros estados de agregación como el plasma y el condensado de Bose-Einstein que aparentemente no son tan familiares.

Características de los estados de agregación

La teoría cinética corpuscular nos permite describir las principales características de los estados de agregación. Veamos de manera inicial algunas características de los sólidos.

Sólidos

<table>
<thead>
<tr>
<th>Hechos (Lo macroscópico)</th>
<th>Interpretaciones desde lo submicro (teoría)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tienen forma propia y definida</td>
<td>Debido a que sus partículas están ordenadas y sólo vibran en un punto fijo. Se mueven, pero no se desplazan unas sobre otras.</td>
</tr>
</tbody>
</table>
Hechos (Lo macroscópico)
Interpretaciones desde lo submicro (Teoría)

<table>
<thead>
<tr>
<th>Los sólidos con frecuencia forman redes cristalinas, pero también forman redes irregulares o sólidos amorfos.</th>
<th>Los partículas (átomos, iones o moléculas) se atraen y se enlanzan entre sí en forma iónica, covalente o metálica, de forma tal que se repite millones de veces formando un cristal macroscópico y en forma desordenada cuando son amorfos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se necesita bastante energía para fundirlos.</td>
<td>Esto se debe a que las partículas se mantienen unidas por importantes fuerzas de atracción o enlaces multidireccionales.</td>
</tr>
<tr>
<td>Los sólidos se dilatan cuando se calientan.</td>
<td>Esto se debe a que las partículas se separan al aumentar la amplitud de su movimiento vibratorio.</td>
</tr>
<tr>
<td>Las vías del ferrocarril se dilatan, por ello se dejan pequeños espacios entre cada tramo de riel.</td>
<td></td>
</tr>
<tr>
<td>Los sólidos calientes y dilatados no pesan más que los fríos, simplemente ocupan más espacio.</td>
<td>No es el número de partículas, ni el tamaño de ellas lo que ha aumentado, sino las distancias medias entre ellas.</td>
</tr>
</tbody>
</table>

Líquidos

<table>
<thead>
<tr>
<th>Hechos (Lo macroscópico)</th>
<th>Interpretaciones desde lo submicro (Teoría)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los líquidos no tienen forma definida y se vierten con facilidad (son fluidos).</td>
<td>En los líquidos las partículas no están ordenadas de forma regular (forman «agregados») y pueden desplazarse unas sobre otras.</td>
</tr>
</tbody>
</table>
Los líquidos presentan otras propiedades como la tensión superficial y la capilaridad.

Tensión superficial

La tensión superficial de un líquido puede definirse como la cantidad de energía necesaria para aumentar su superficie por unidad de área. Esto implica que el líquido presente una resistencia para aumentar su superficie.

La tensión superficial depende de la naturaleza del líquido, del medio que le rodea y de la temperatura. En general, la tensión superficial disminuye con la temperatura, ya que las fuerzas de cohesión disminuyen al aumentar la energía cinética corpuscular.

¿Sabías que... esta propiedad permite a algunos insectos, como arañas y mosquitos, caminar sobre la superficie del líquido?

¿Sabías que... la tensión superficial le da a la superficie del agua una apariencia de membrana elástica? Esto se puede observar al presionar cuidadosamente con un clip y de manera vertical la superficie del agua. Colocado de manera horizontal, puede flotar.

Capilaridad

La capilaridad es la propiedad que tiene un líquido para subir por un tubo estrecho (capilar) desafiando la fuerza de la gravedad.

El nivel que alcanza es directamente proporcional a la tensión superficial del líquido e inversamente proporcional al grosor interno del tubo.
La capilaridad se debe a la existencia de dos tipos de fuerzas diferentes: las cohesivas, que son las fuerzas entre las moléculas del líquido y las adhesivas que son las fuerzas que operan entre las moléculas del líquido y el capilar.

¿Sabías que...
la capilaridad es indispensable para que el agua pueda subir por el tallo de las plantas hasta la última hoja?

¿Sabías que...
esta propiedad es la causa de que se forme una pequeña curvatura o menisco en la superficie del líquido, cuando está contenido en una pipeta, probeta o tubo de ensayo?

¿Sabías que...
la curvatura o el menisco que se forma en la superficie del único metal líquido es de tipo convexo?

¿Sabías que...
la difusión es un proceso físico que puede ocurrir tanto en líquidos como en gases, debido a que las partículas pueden desplazarse e interaccionar entre ellas?
En la difusión, las partículas se dispersan en un medio en el que inicialmente estaban ausentes. Las partículas que se difunden o dispersan forman parte del soluto y en el medio donde se difunden, del disolvente.

¿Sabías que...
la viscosidad es una medida de la resistencia que presenta un líquido a fluir? El aceite y la miel son dos líquidos con viscosidad elevada y por eso fluyen con dificultad.

Gases

<table>
<thead>
<tr>
<th>Hechos (Lo macroscópico)</th>
<th>Interpretaciones desde lo submicro (teoría)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los gases no tienen forma definida, adoptan la del recipiente que los contiene.</td>
<td>En los gases las partículas se mueven libremente y las interacciones (fuerzas de atracción) entre ellas son débiles (casi nulas).</td>
</tr>
</tbody>
</table>
Gases

<table>
<thead>
<tr>
<th>Hechos (Lo macroscópico)</th>
<th>Interpretaciones desde lo submicro (teoría)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los gases no tienen volumen fijo, son fácilmente compresibles.</td>
<td>En los gases, las distancias entre las partículas son muy grandes comparadas con el tamaño de ellas, estos espacios vacíos permiten que al aplicar presión las partículas se acerquen de manera considerable.</td>
</tr>
<tr>
<td>Ejercen presión</td>
<td>En los gases la velocidad de las partículas es elevada, produciéndose choques elásticos entre ellas y con las paredes del recipiente. La energía se transfiere de una partícula a otra.</td>
</tr>
<tr>
<td>Se difunden</td>
<td>Las partículas se mueven o desplazan rápidamente en un continuo movimiento azaroso.</td>
</tr>
</tbody>
</table>

\[
HCl(g) + NH_3OH(g) \rightarrow NH_4Cl(g) + H_2O(g)
\]

Actividad 2.9

Indaga en diversas fuentes las características principales del cuarto estado de la materia: el plasma.
3. Procesamiento de la información

Actividad 2.10

En forma individual y de acuerdo a las características de los siguientes cuerpos materiales clasifícalos, como homogéneos o heterogéneos.

<table>
<thead>
<tr>
<th>Cuerpos materiales homogéneos</th>
<th>Cuerpos materiales heterogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frutas</td>
<td>Cápsulas</td>
</tr>
<tr>
<td>Tierra</td>
<td>Vinagre de manzana</td>
</tr>
<tr>
<td>Cal</td>
<td>Hoja de vid</td>
</tr>
<tr>
<td>Crayolas</td>
<td>Madera</td>
</tr>
<tr>
<td>Sulfato de cobre</td>
<td></td>
</tr>
</tbody>
</table>
Actividad 2.11

En forma colaborativa completa el mapa conceptual sobre la clasificación de la materia teniendo en cuenta el criterio de la composición y el estado de agregación, para realizarlo utiliza términos y fórmulas que se enlistan a continuación: Disoluciones, aleaciones (bronce, amalgama, latón), cuerpos homogéneos, aire, nitrox (nitrógeno-oxígeno), compuestos, bromo y mercurio, cuerpos materiales, binarios, cuerpos heterogéneos, gaseosos, sustancias, mezclas homogéneas, disoluciones líquidas, sólidos, cuaternarios, H_3PO_4, HNO_3, H_2SO_4, Cu(OH)_2.

La materia

Se presenta en forma de

estos son

son

se separan en

son

Mezclas heterogéneas

conocidas como

por su estado físico se clasifican en

Disoluciones gaseosas

Disoluciones sólidas

Líquidos

Ternarios

por su composición

Elementos

por su estado físico se clasifican en

ejemplos

Alcohol en agua
Sal en agua
Azúcar en agua
Cloro en tetracloruro de carbono
Hierro
Sodio
Calcio
Potasio
Cobalto
Gases nobles
Hidrógeno
 Oxígeno
Nitrógeno, etc.
Actividad 2.12

En forma colaborativa completa la siguiente tabla que resume las características macroscópicas y submicroscópicas de los cuerpos materiales por su estado de agregación.

<table>
<thead>
<tr>
<th>Características de los estados de agregación</th>
<th>Sólido</th>
<th>Líquido</th>
<th>Gaseoso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volumen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluidez</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compresibilidad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capilaridad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión superficial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difusión</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discontinuidad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuerza de cohesión</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Actividad 2.13

En forma individual resuelve la siguiente situación problémica: A un estudiante le dejaron de tarea clasificar los materiales o productos químicos utilizados en su hogar, teniendo en cuenta para ello, como criterio de clasificación, su composición. Muchos de los productos comerciales traen en su etiqueta el contenido del producto, pero otros no, por lo que tuvo que echar mano del internet para la búsqueda de información sobre el contenido o composición de esos materiales. Para facilitar su trabajo, elaboró una tabla con varias columnas en la que organizó los datos obtenidos. A continuación se muestra un ejemplo de lo que hizo, pero que tú deberás completar.

<table>
<thead>
<tr>
<th>Cuerpo material</th>
<th>Constituyentes</th>
<th>Elemento</th>
<th>Compuesto</th>
<th>Mezcla homogénea</th>
<th>Mezcla heterogénea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vidrio</td>
<td>SiO₂, CaCO₃ y Na₂CO₃.</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Yeso</td>
<td>CaSO₄</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspirina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detergente en polvo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolsa de polietileno</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ácido muriático</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas doméstico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol de 70⁰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blanqueador de ropa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hierro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crema para la piel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aceite vegetal comestible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Autoevaluación

Actividad 2.14
Resuelve el siguiente crucigrama.

Cuerpos materiales

Horizontales
3. Estado de agregación en el que las moléculas se mueven o desplazan unas sobre las otras, manteniéndose unidas.
6. Si al aumentar la temperatura de un sólido éste pasa directamente al estado gaseoso, al proceso se le denomina.
11. A las mezclas homogéneas se les conoce comúnmente como...
12. Estado de agregación en el que las partículas no pueden desplazarse, sólo vibran en un punto determinado.
13. Estado de agregación en el que las partículas presentan mayor energía cinética y se dispersan en todas direcciones.
14. Propiedad de los líquidos que permite a algunos insectos caminar sobre su superficie.

Verticales
1. Nombre que recibe la partícula más pequeña que resulta de la unión química de dos o más átomos iguales o diferentes.
2. Se denomina así a las fuerzas que mantienen unidas a las partículas en un cuerpo material.
4. Es una medida de la resistencia que presenta un líquido para fluir.
5. Tanto las disoluciones como las sustancias son cuerpos materiales de apariencia...
7. Sustancia que resulta de la combinación química de dos o más elementos diferentes en proporciones definidas.
8. Cuerpo material homogéneo constituido por un solo tipo de componente.
9. El cobre, la plata, el oro y el oxígeno, son ejemplos de...
10. En el siglo XVII definió a los elementos como sustancias que no pueden ser descompuestas en otras más simples.
Autoevaluación

Actividad 2.15

Elabora un escrito donde reflexiones acerca de la importancia de utilizar algunos métodos de separación de sustancias en el cuidado de la salud y el ambiente, tomando como ejemplo, la potabilización del agua y el tratamiento de aguas residuales.

__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
Las propiedades de las sustancias: ¿para qué medirlas?

- Identifica propiedades generales y específicas en sustancias de la vida cotidiana.
- Mide propiedades generales y específicas de sustancias sólidas, líquidas o gaseosas y las contrasta con las obtenidas en la literatura química.
- Presenta disposición para el trabajo colaborativo, respeta y aplica normas de seguridad en el manejo de las sustancias.

1. Problematización
¿Por qué es importante medir las propiedades de una sustancia?
__
__
__

Actividad 2.16
Explora tus conocimientos previos, dando respuesta a los siguientes cuestionamientos.

1. Si se congela un litro de agua, ¿el volumen del hielo será mayor, igual o menor que el del agua líquida?

__
__
__
¿Cómo lo comprobarías? __
__

2. La siguiente es una lista de propiedades del azufre:
 i. Sólido frágil y cristalino.
 ii. Punto de fusión de 115°C.
 iii. Densidad de 1.96 g/cm³.
 iv. Se combina con el oxígeno para formar el dióxido de azufre.

¿Cuál de estas propiedades podrían ser las mismas para un solo átomo de azufre obtenido de la muestra?
 a) i y ii
 b) iii y iv
 c) iv
 d) Todas estas características serían iguales
 e) Ningunas de estas características serían iguales

3. Los cuerpos materiales poseen propiedades generales como masa, peso y volumen. Además de estas propiedades, ¿qué otras conoces?
__
__
__
2. Adquisición y organización de la información

Actividad 2.17

En forma individual lee la información que se te proporciona acerca de las propiedades de las sustancias.

Los cuerpos materiales presentan propiedades muy diversas debido a las sustancias que los constituyen. Estas propiedades han sido clasificadas para su estudio en generales y específicas. A su vez, las propiedades específicas se clasifican en físicas y químicas. La pregunta sería por qué y para qué medir estas propiedades.

Propiedades generales

Las propiedades generales, como su nombre lo indica, son propiedades que todos los cuerpos materiales poseen. Por ello, cabría la siguiente pregunta, ¿si dos cuerpos poseen la misma masa y el mismo peso, ayuda esto a diferenciarlos?

Actividad 2.18

En forma individual lee la información que se te proporciona acerca de las propiedades de las sustancias.

Con la ayuda de tu profesor y mediante una lluvia de ideas completa la siguiente tabla, con la definición de algunas propiedades generales de la materia.

<table>
<thead>
<tr>
<th>Propiedades generales</th>
<th>Se refiere a:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen</td>
<td>La cantidad de espacio que ocupa un cuerpo</td>
</tr>
<tr>
<td>Masa</td>
<td>La cantidad de materia que posee un cuerpo</td>
</tr>
<tr>
<td>Peso</td>
<td>La fuerza de atracción gravitacional que ejerce la masa de un cuerpo (Tierra), sobre la masa de otro.</td>
</tr>
<tr>
<td>Impenetrabilidad</td>
<td></td>
</tr>
<tr>
<td>Inercia</td>
<td></td>
</tr>
<tr>
<td>Discontinuidad</td>
<td></td>
</tr>
</tbody>
</table>

Actividad 2.19

A las propiedades generales también se les conoce como extensivas. Indaga en diversas fuentes el por qué de este concepto.
Propiedades específicas

Las propiedades específicas, son características que nos permiten identificar o diferenciar a los distintos cuerpos materiales. Ejemplos de ellas, tenemos a la densidad, el punto de fusión, por mencionar sólo algunas.

Las propiedades específicas se clasifican en físicas y químicas.

Propiedades físicas

Las propiedades físicas son aquéllas que se pueden medir o determinar sin que varíe la composición química de la sustancia. por ejemplo, el color, olor, estado físico, punto de ebullición, punto de fusión, densidad y solubilidad, entre otras.

Por ejemplo, el agua posee las siguientes propiedades físicas:

- Un punto de ebullición de 100 °C a nivel del mar.
- Una densidad de 1g/cm³ a la temperatura de 4°C.
- Un punto de fusión de 0 °C al nivel del mar.
- Existe en sus tres estados físicos: sólido, líquido y gaseoso.
- Es insípida e inodora.

Las propiedades físicas son propiedades macroscópicas que se pueden determinar directamente. Estas propiedades son de conjunto, no individuales, por ejemplo, si un jarrón de cobre es de color café rojizo, no significa que sus átomos tengan que ser café rojizo. En cambio las propiedades químicas se manifiestan tanto a nivel macroscópico como submicroscópico.

Actividad 2.20

Con la ayuda de tu profesor y mediante una lluvia de ideas, completa la siguiente tabla acerca de de las propiedades físicas. Posteriormente acude a las fuentes de información y contrasta tus respuestas.

<table>
<thead>
<tr>
<th>Propiedades físicas</th>
<th>Se refiere a:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estado de agregación</td>
<td>El estado en que se encuentra la materia: sólido, líquido, gaseoso, plasma y CBE (Condensado de Bose-Einstein).</td>
</tr>
<tr>
<td>Densidad</td>
<td>La relación entre la masa y el volumen de un cuerpo.</td>
</tr>
<tr>
<td>Solubilidad</td>
<td>La facilidad con que una sustancia se disuelve en otra.</td>
</tr>
<tr>
<td>Punto de ebullición</td>
<td></td>
</tr>
<tr>
<td>Punto de fusión</td>
<td></td>
</tr>
<tr>
<td>Maleabilidad</td>
<td></td>
</tr>
</tbody>
</table>
De las propiedades físicas mencionadas, sólo abordaremos a la densidad y la solubilidad.

Densidad

La densidad es una propiedad física que caracteriza a las sustancias y se expresa como la masa de una sustancia por unidad de volumen. Las unidades en que se expresa son, \(g/cm^3 \), \(g/mL \), \(g/L \), \(Kg/m^3 \) y su expresión matemática es:

\[
d = \frac{m}{v}
\]

Donde:
- \(m \) = masa del cuerpo
- \(v \) = volumen ocupado por la masa del cuerpo

Solubilidad

La solubilidad es una propiedad física de las sustancias, la cual nos muestra la cantidad de soluto que se puede disolver en una cantidad dada de disolvente a una temperatura determinada. También se define como la cantidad máxima de sustancia sólida que se puede disolver en 100g de disolvente a una temperatura determinada.

Por ejemplo, la gráfica nos permite interpretar que la solubilidad del nitro de potasio, \(KNO_3 \) en 100 g de agua a 20 °C es de aproximadamente 30 g y que a 50 °C se pueden disolver 80 g de \(KNO_3 \).
Tabla 2.1 Densidades de algunas sustancias en g/cm³.

<table>
<thead>
<tr>
<th>Sustancia</th>
<th>Densidad en g/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua</td>
<td>1.00</td>
</tr>
<tr>
<td>Hielo</td>
<td>0.92</td>
</tr>
<tr>
<td>Oro</td>
<td>19.3</td>
</tr>
<tr>
<td>Plata</td>
<td>10.50</td>
</tr>
<tr>
<td>Aire</td>
<td>0.00129</td>
</tr>
</tbody>
</table>

Fig. 2.10 Disolución de nitrato de potasio en agua.

Actividad 2.21

Indaga las propiedades físicas de las siguientes sustancias, y el por qué a las propiedades físicas se les denomina intensivas.

<table>
<thead>
<tr>
<th>Propiedad física</th>
<th>H₂O</th>
<th>Alcohol etílico</th>
<th>Fe</th>
<th>Cu</th>
<th>O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punto de ebullición</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punto de fusión</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Densidad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Propiedades intensivas ________________________________
Propiedades químicas

Las propiedades químicas son aquellas que sólo pueden determinarse cuando cambia la composición de la sustancia. Estas describen el comportamiento de una sustancia en las reacciones químicas. Por tanto, también se pueden definir como la propiedad de una sustancia para combinarse o cambiar en otra o más sustancias.

Algunos ejemplos de propiedades químicas son, la reactividad de una sustancia con otras, la combustibilidad, la oxidación y la reducción. Por ejemplo, una propiedad química de los gases nobles es que no reaccionan en condiciones normales, sólo cuando se varía la presión y la temperatura.

<table>
<thead>
<tr>
<th>Propiedades del hierro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propiedades físicas</td>
</tr>
<tr>
<td>● Es de color gris plateado.</td>
</tr>
<tr>
<td>● Es duro.</td>
</tr>
<tr>
<td>● Fácilmente se puede convertir en alambres (dúctil) y en láminas (maleable).</td>
</tr>
<tr>
<td>● Es magnético.</td>
</tr>
<tr>
<td>● Buen conductor del calor y la electricidad.</td>
</tr>
<tr>
<td>● Densidad = 7.86 g/cm³.</td>
</tr>
<tr>
<td>● Punto de ebullición = 3000 °C.</td>
</tr>
<tr>
<td>● Punto de fusión = 1536 °C.</td>
</tr>
<tr>
<td>Propiedades químicas</td>
</tr>
<tr>
<td>● Reacciona suavemente con el aire.</td>
</tr>
<tr>
<td>● Se oxida fácilmente a 2+ y a 3+.</td>
</tr>
<tr>
<td>● Es un buen agente reductor.</td>
</tr>
<tr>
<td>● Si se pone al rojo vivo, arde.</td>
</tr>
<tr>
<td>● Reacciona con los ácidos diluidos desplazando al hidrógeno.</td>
</tr>
<tr>
<td>● Reacciona con los halógenos.</td>
</tr>
<tr>
<td>● Se vuelve pasivo con los ácidos fuertes, como el nítrico y sulfúrico, porque forma una capa protectora de óxido.</td>
</tr>
</tbody>
</table>

¿Sabías que...

Las propiedades de la materia también se suelen clasificar como extensivas e intensivas? Se dicen que son extensivas porque dependen de la cantidad de la muestra. Por ejemplo, la masa y el volumen. Se dice que son intensivas porque no dependen de la cantidad de la muestra. Por ejemplo, la densidad de una sustancia a temperatura y presión constantes es la misma, sin importar la cantidad de masa.
3. Procesamiento de la información

Actividad 2.22

En forma colaborativa elabora el mapa conceptual acerca de las propiedades de la materia. Para realizarlo utiliza los términos o conceptos que se te proporcionan a continuación: propiedades físicas, propiedades generales, propiedades específicas, propiedades químicas, ejemplos de propiedades generales (masa, peso, volumen, inercia, discontinuidad, impenetrabilidad), ejemplos de propiedades físicas (densidad, punto de fusión y de ebullición, solubilidad), ejemplos de propiedades químicas (la reactividad de una sustancia con otras, la combustibilidad, la oxidación y la reducción), propiedades extensivas, propiedades intensivas y propiedades de la materia.
Actividad 2.23

Clasifica cada una de las siguientes propiedades como físicas o químicas, según corresponda.

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Física</th>
<th>Química</th>
</tr>
</thead>
<tbody>
<tr>
<td>El cobre es un sólido a temperatura ambiente.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El azúcar es soluble en agua.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La guayaba tiene un olor característico.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El cloro es un gas amarillo verdoso.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El hierro se oxida fácilmente con la humedad.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El mercurio es un metal líquido.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El azúcar se fermenta y se transforma en alcohol.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los metales conducen la electricidad y el calor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El punto de ebullición del etanol es 78°C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El agua al reaccionar con los óxidos metálicos forma hidróxidos.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El plomo es muy fácil de laminar.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El carbón es muy frágil, se rompe con facilidad.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El oxígeno al combinarse con los metales forma óxidos.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La densidad del aceite es de 0.920 g/cm³.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Actividad 2.24

Utiliza la información proporcionada para dar respuesta a las siguientes situaciones problemáticas que involucran los conceptos de densidad y solubilidad.

Densidad

1. Si congelas 1L de agua, ¿el volumen del hielo será mayor, igual o menor que el del agua líquida? Independientemente de tu respuesta, ¿cómo comprobarías tu hipótesis?

__
__
__
2. Si un cubo de hielo tiene 4 cm por cada lado y la densidad del agua es 1.00 g/mL a 4°C y de 0.92 g/mL a 0°C. ¿Cuál será el volumen de agua líquida que queda cuando se funde el bloque de hielo? ¿Se necesita alguna otra información adicional para resolver este problema?

3. Si 50 g de cobre se calientan a una temperatura superior a su punto de fusión (>1083°C), éste se volverá líquido. ¿Cuál es la masa del cobre fundido? ¿Se necesita alguna información adicional para resolver el problema?

4. En una probeta graduada están contenidos 150 mL de agua. En ella se introduce un pedazo de hierro de 35 g, si la densidad del hierro es de 7.86 g/cm³, ¿cuál será el volumen final en la probeta? ¿Se necesita alguna información adicional para resolver el problema?

5. Determina la masa del aire contenido en un salón de clase que tiene las siguientes dimensiones: 10 m de largo, 7 m de ancho y 3 m de altura, si la densidad del aire es 0.00129 g/cm³. ¿Se necesita alguna información adicional para resolver el problema?

6. ¿Cuál será la masa de una disolución glucosada contenida en un frasco para solución intravenosa de 500 mililitros, si la densidad de la disolución glucosada es de 1.15 g/mL? ¿Se necesita alguna información adicional para resolver el problema?
Solubilidad

1. Determina la solubilidad del nitrato de sodio, NaNO₃ a 40°C y a 60°C. Para responder a esta pregunta, utiliza la gráfica de solubilidad del NaNO₃ de la página 81.

__

__

__

__

__

2. ¿Cuál es la masa de los cristales que se forman, si la disolución saturada de NaNO₃ en 100g de agua, se enfrió de 60°C a 40°C. ¿Se necesita alguna información adicional para resolver el problema?

__

__

__

__

__

Las propiedades macroscópicas y submicroscópicas.

1. La siguiente es una lista de propiedades del plomo:

 i. Sólido de color gris azulado
 ii. Punto de fusión de 327.46 °C.
 iii. Densidad de 11.34 g/cm³.
 iv. Se combina con el oxígeno para formar, monóxido y dióxido de plomo.

¿Cuáles de estas propiedades podrían ser las mismas para un solo átomo de azufre obtenido de la muestra?

a) i e ii b) iii y iv c) iv

 d) Todas estas características serían iguales

 e) Ningunas de estas características serían iguales
5. Autoevaluación

Actividad 2.25

Resuelve el siguiente crucigrama acerca de las propiedades de la materia.

Propiedades de la materia

Horizontales

4. Nombre que reciben las propiedades que dependen de la masa de la sustancia.
8. Propiedad general referida al espacio ocupado por la masa de un cuerpo.
9. Propiedad que sólo puede observarse cuando la sustancia en cuestión interactúa químicamente con otra.
10. Nombre que reciben también las propiedades que no dependen de la cantidad de masa.
11. Propiedad física que nos expresa la facilidad con que una sustancia se disuelve en otra.
13. Propiedades que son comunes a cualquier tipo de cuerpo material.
14. Propiedad de algunas sustancias que las hace capaces de arder.
15. Propiedad física de los metales de poderse laminar.

Verticales

1. Es el resultado de la fuerza de atracción gravitacional sobre la masa de un cuerpo.
2. Propiedades que distinguen a una sustancia de otra.
3. Propiedad general que nos expresa la cantidad de materia que posee un cuerpo.
5. Propiedad de los metales de poderse deformar en hilos, cables y alambres.
6. Propiedad que puede determinarse, observarse o manipularse sin alterar la composición de la sustancia.
7. Propiedades físicas que pueden ser percibidas a través de nuestros sentidos como el color, olor, sabor y olor.
12. Propiedad física que expresa la relación entre la masa y el volumen de un cuerpo.
Autoevaluación

La siguiente lista de cotejo puede servir para autoevaluar tu nivel de desempeño, en los diferentes momentos de la realización de la secuencia didáctica: Las propiedades de las sustancias: ¿para qué medirlas?

<table>
<thead>
<tr>
<th>Criterios</th>
<th>Indicadores</th>
<th>Si</th>
<th>No</th>
<th>Puntos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problematización</td>
<td>Explora sus conocimientos previos al resolver la actividad 2.16.</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Adquisición y organización de la información</td>
<td>Realiza las actividades 2.18 y 2.20 referido a definiciones de propiedades generales y específicas.</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Indaga los conceptos: propiedades extensivas (actividad 2.19) e intensivas (actividad 2.21) y las propiedades físicas de algunas sustancias.</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Procesamiento de la información</td>
<td>Elabora el mapa conceptual y clasifica propiedades de algunas sustancias como físicas o químicas.</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Aplicación</td>
<td>Resuelve los ejercicios de densidad y solubilidad de la actividad 2.24.</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Autoevaluación</td>
<td>Resuelve el crucigrama de la actividad 2.25.</td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>Actitudes y valores</td>
<td>Se integra de manera eficiente al trabajo colaborativo.</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Participa con respeto y tolerancia en el equipo.</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Participa con responsabilidad en el cumplimiento de las actividades.</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Los cambios en las sustancias: ¿sólo físicos y químicos?

- Describe los cambios físicos y químicos que se presentan en su entorno y se cuestiona por la existencia de otros tipos de cambios.
- Utiliza los niveles de representación de la química para explicar los cambios físicos y químicos que suceden en su vida cotidiana.
- Toma decisiones sobre los daños ocasionados por el ser humano al ambiente: cambio climático, lluvia ácida.

1. Problematización

¿Los cambios que se presentan en la naturaleza, ¿sólo se pueden clasificar como físicos o químicos? __
__
__

Actividad 2.26

En forma colaborativa y mediante una lluvia de ideas da respuesta a las siguientes preguntas.

1. Los fenómenos son siempre sucesos anormales o paranormales. F V
2. El ciclo del agua es un fenómeno físico. F V
3. Para que un cambio se realice, siempre se requiere energía. F V
4. Existen fenómenos físicos, químicos, biológicos, sociales, nucleares. F V
5. En un fenómeno físico sólo cambia la composición del cuerpo material. F V
6. En un fenómeno nuclear, existe combinación y transformación de partículas subatómicas. F V
7. La floración de las plantas es un fenómeno biológico. F V
8. La corrosión de los metales es un fenómeno químico. F V
9. En un fenómeno químico no cambia la composición del cuerpo material. F V
10. La fotosíntesis es sólo un fenómeno físico. F V
11. Cuando un gas se calienta, sus partículas aumentan de tamaño. F V
12. Cuando una sustancia cambia de estado físico, también cambia su masa. F V
13. Cuando el agua hiere durante 20 minutos, las burbujas que se liberan son del aire que se encontraba disuelto. F V
14. El calentamiento global del planeta no puede ser considerado un fenómeno. F V
15. En el sol ocurren fenómenos nucleares, de fusión y fisión. F V
16. Los cambios de estado de agregación en las sustancias son cambios físicos. F V
2. Adquisición y organización de la información

Actividad 2.27

En forma individual lee la información que se te proporciona acerca de los cambios en las sustancias.

El cambio es una constante manifestación de la naturaleza. Generalmente se acostumbra clasificar al cambio en dos categorías: físicos y químicos. Sin embargo, es necesario precisar que los cambios que se presentan en la naturaleza no son exclusivamente físicos o químicos, sino también biológicos, nucleares, sociales, entre otros. A todo cambio, sea este físico, químico o biológico se le conoce también como fenómeno.

Denominaremos fenómeno a todo cambio, modificación o transformación que se produce en las sustancias, sea ésta, en su composición, forma, estructura, posición, color, etc.

Cuando las modificaciones o cambios no alteran la composición de las sustancias, se dice que son cambios físicos, ejemplos de ello, tenemos varios, como el inflado de un globo, el recortar un papel, el estiramiento de una liga, los fenómenos de la luz (difracción, reflexión y refracción), la disolución del azúcar, la evaporación de un líquido, entre otros.

Cuando los cambios alteran la composición de las sustancias, se dice que son cambios químicos, algunos ejemplos son, la combustión de un cerillo, la oxidación de un clavo, la fermentación, la acción de un ácido sobre la superficie de un metal, etc.

Los cambios que se llevan a cabo en el sol, así como los que se llevan a cabo en los núcleos de algunas sustancias como el uranio, polonio, plutonio, se denominan cambios nucleares, estos cambios son de dos tipos, de fisión y de fusión. La fisión ocurre cuando un núcleo inestable se divide en dos o más núcleos pequeños, liberando además de energía, y neutrones, partículas alfa y beta. La fusión es un proceso en el que varios núcleos atómicos se unen para formar un núcleo atómico más pesado, en este proceso también se libera gran cantidad de energía.
Actividad 2.28

Indaga en diversas fuentes electrónicas o bibliográficas, las características que presentan los fenómenos físicos y químicos.

<table>
<thead>
<tr>
<th>Características</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambio físico</td>
<td>Cambio químico</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cambios de estado de agregación de la materia

Los cambios de estado de agregación de la materia son cambios físicos. Para realizar un cambio de un estado a otro, es necesario tener en cuenta, además de la naturaleza de la sustancia, el aumento o disminución de la presión o de la temperatura, para poder variar la energía cinética de sus partículas.

La energía da movimiento a las partículas, que vibran o se desplazan en todas direcciones, chocando unas con otras. A esta energía de movimiento se denomina energía cinética de las partículas.

Por ejemplo, para que un líquido cambie al estado gaseoso, es necesario proporcionarle calor para que aumente su temperatura y, por consiguiente, la energía cinética de sus partículas, o bien (o al mismo tiempo) reducir la presión externa.

El calor es una forma de energía que se transfiere de un cuerpo de mayor temperatura a otro de menor temperatura y está asociada al movimiento de las partículas.

La temperatura de un sistema, es una medida de la energía promedio de las partículas del sistema.
En el siguiente diagrama se muestran los diferentes cambios en los tres estados de agregación de la materia.

![Diagrama de los tres estados de agregación](image)

Fig. 2.15 Los cambios de estado de agregación.

En el siguiente ejemplo se explica la fusión y la evaporación desde los niveles macroscópico y submicroscópico.

<table>
<thead>
<tr>
<th>Hechos (lo macroscópico)</th>
<th>Interpretaciones desde lo submicroscópico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusión</td>
<td>Al aumentar la temperatura, la energía cinética de las partículas se incrementa, provocando que la red del sólido se desorganice, en pequeños grupos de partículas.</td>
</tr>
<tr>
<td>Cuando a un sólido se le aplica calor, éste puede pasar al estado líquido.</td>
<td>Al iniciar el punto de fusión, la temperatura no se eleva porque la energía la utiliza el sistema en desordenar la red.</td>
</tr>
<tr>
<td>Cuando un sólido se calienta, de forma tal que se funde, al llegar a este punto el ascenso de la temperatura se detiene o permanece constante, hasta que todo el sólido se funde.</td>
<td></td>
</tr>
<tr>
<td>La fusión es el cambio de estado sólido a líquido.</td>
<td></td>
</tr>
</tbody>
</table>

![Gráfico de fusión](image)
Evaporación

Al cambio de estado líquido a vapor o gas se le denomina evaporación. Esta ocurre a cualquier temperatura y sólo se evaporan las partículas de la superficie del líquido.

Al aumentar la energía cinética de las partículas, éstas vibran rápidamente, algunas se liberan y escapan de la superficie del líquido al vencer las fuerzas atractivas.

3. Procesamiento de la información

Actividad 2.29

En forma colaborativa explica los siguientes cambios de estado de agregación de la materia haciendo uso de la teoría cinética corpuscular.

<table>
<thead>
<tr>
<th>Hechos (Lo macroscópico)</th>
<th>Interpretaciones desde lo submicroscópico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensación</td>
<td></td>
</tr>
<tr>
<td>Solidificación</td>
<td></td>
</tr>
<tr>
<td>Hechos (Lo macroscópico)</td>
<td>Interpretaciones desde lo submicroscópico</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Sublimación</td>
<td></td>
</tr>
<tr>
<td>Licuación</td>
<td></td>
</tr>
</tbody>
</table>

¿Sabías que... el agua es la única sustancia que podemos encontrar en condiciones normales en tres estados de agregación: sólido, líquido y gaseoso?

¿Sabías que... la evaporación del sudor que se libera en la transpiración, cumple la función de mantener el equilibrio térmico del cuerpo?
4. Aplicación de la información

Actividad 2.30

Aplica la información para dar respuesta a los siguientes cuestionamientos.

1. Deja caer una gota de acetona sobre la superficie de un vidrio. Observa durante algunos minutos lo que ocurre. ¿Cómo denominas a este fenómeno?_______________________
La acetona, ¿desaparece?_______________________Si no es así, ¿dónde está? Intenta expli-
car utilizando la teoría cinética corpuscular por qué sucede este hecho.

__
__
__

2. Tras muchos experimentos, los científicos han llegado a la conclusión de que todas las sustancias están formadas por partículas. Teniendo esto en cuenta, trata de explicar qué ocurre con las partículas de un bloque de hielo que al sacarlo de un congelador, pasa su temperatura desde –10°C a –1°C.

__
__
__

3. Se mide la masa de un recipiente cerrado que contiene una pequeña cantidad de al-
cohol. Enseguida se deja evaporar el alcohol sin destapar el frasco. Se vuelve a medir su masa. ¿Qué ocurrirá?

a) Aumentará la masa b) Disminuirá la masa c) Será la misma
d) Dependerá de la temperatura e) Tengo duda

4. ¿Cuál es la razón para su respuesta en la pregunta 3?

a) Un gas pesa menos que un líquido
b) La masa se conserva.
c) El vapor de alcohol es menos denso que el alcohol líquido
d) Los gases se elevan
e) El vapor de alcohol es más ligero que el aire

5. Un refresco embotellado forma a veces una capa de agua en el exterior del vidrio. ¿Cómo explicar este fenómeno?

a) El agua se evapora del refresco y se condensa en el exterior del envase de vidrio.
b) El envase de vidrio actúa como una membrana semipermeable y permite que el agua pase, pero no el refresco.
c) El vapor de agua se condensa del aire.
d) La baja temperatura hace que el oxígeno y el hidrógeno del aire se combinen formando el agua en el envase de cristal.
6. El círculo de la derecha de la figura (a) muestra un posible modelo de la forma submicroscópica de cómo se encuentran las moléculas de nitrógeno líquido en un recipiente cerrado.

7. Cuando un objeto se calienta aumenta de tamaño. A este fenómeno lo llamamos dilatación. Si calentamos el aire presente en un matraz, al cual previamente le colocamos un globo en la boca de salida. ¿Cuál de las siguientes afirmaciones explica mejor este hecho?

a) Al calentar aumenta el número de partículas.
b) Al calentar se agitan más intensamente las partículas y aumenta la distancia entre ellas.
c) Al calentar aumenta el tamaño de las partículas.
d) Ninguna de las anteriores.

8. Si se coloca una muestra de naftalina en un tubo cerrado y después se calienta; la naftalina pasa al estado gaseoso. ¿Qué tipo de cambio de estado de agregación ocurre?

a) Solidificación
b) Licuación
c) Evaporación
d) Sublimación
5. Autoevaluación

Actividad 2.31

Responde de nuevo a las preguntas iniciales como falsas o verdaderas y fundamenta cada una de tus respuestas.

<table>
<thead>
<tr>
<th>Pregunta</th>
<th>Fundamentación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Los fenómenos son siempre sucesos anormales o paranormales.</td>
<td></td>
</tr>
<tr>
<td>2. Los fenómenos son siempre sucesos anormales o paranormales.</td>
<td></td>
</tr>
<tr>
<td>3. Para que un cambio se realice, siempre se requiere energía.</td>
<td></td>
</tr>
<tr>
<td>4. Existen fenómenos físicos, químicos, biológicos, sociales, nucleares.</td>
<td></td>
</tr>
<tr>
<td>5. En un fenómeno físico sólo cambia la composición del cuerpo material.</td>
<td></td>
</tr>
<tr>
<td>6. En un fenómeno nuclear, existe combinación y transformación de partículas subatómicas.</td>
<td></td>
</tr>
<tr>
<td>7. La floración de las plantas es un fenómeno biológico.</td>
<td></td>
</tr>
<tr>
<td>8. La corrosión de los metales es un fenómeno químico.</td>
<td></td>
</tr>
<tr>
<td>9. En un fenómeno químico no cambia la composición del cuerpo material.</td>
<td></td>
</tr>
<tr>
<td>10. La fotosíntesis es sólo un fenómeno físico.</td>
<td></td>
</tr>
<tr>
<td>11. Cuando un gas se calienta, sus partículas aumentan de tamaño.</td>
<td></td>
</tr>
<tr>
<td>12. Cuando una sustancia cambia de estado físico, también cambia su masa.</td>
<td></td>
</tr>
<tr>
<td>13. Cuando el agua hierve durante 20 minutos, las burbujas que se liberan son del aire que se encontraba disuelto.</td>
<td></td>
</tr>
<tr>
<td>14. El calentamiento global del planeta no puede ser considerado un fenómeno.</td>
<td></td>
</tr>
<tr>
<td>15. En el sol ocurren fenómenos nucleares, de fusión y fisión.</td>
<td></td>
</tr>
</tbody>
</table>
Autoevaluación

Actividad 2.32

Resuelve el siguiente crucigrama.

Cambios de las sustancias

Horizontales
1. Estado de agregación en el que la presión de vapor de un líquido es igual a la presión externa ejercida sobre el líquido.
2. Proceso en el cual, al disminuir la temperatura de un líquido, éste cambia al estado sólido.
3. Estado de agregación en el que las partículas presentan mayor energía cinética y se dispersan en todas direcciones.
4. Estado de agregación en el que las moléculas se mueven o desplazan unas sobre otras, manteniéndose unidas.
5. Proceso en el cual al disminuir la temperatura de un gas, este logra pasar al estado sólido.
6. Cuando los líquidos pasan al estado gaseoso, a esta nueva fase se le denomina...
7. Estado de agregación en el que las partículas no pueden desplazarse, sólo vibran en un punto determinado.
8. Al aumentar la temperatura de un líquido, sus partículas aumentan su energía cinética y logran salir en forma gaseosa o liberarse de la superficie, a este proceso se le denomina.
9. Magnitud termodinámica que mide el nivel térmico de un cuerpo.
10. Si los líquidos se condensan, los gases se...
11. Cuando los líquidos pasan al estado gaseoso, a esta nueva fase se le denomina...
12. Temperatura a la cual la presión de vapor de un líquido es igual a la presión externa ejercida sobre el líquido.
13. Los sólidos al aumentar su temperatura hasta alcanzar su punto de fusión, se funden y se convierten en líquidos. A este cambio físico se le denomina.
14. Si al aumentar la temperatura de un sólido éste pasa directamente al estado gaseoso, al proceso se le denomina.
15. Estado de agregación en el que las partículas presentan mayor energía cinética y se dispersan en todas direcciones.
16. Proceso en el cual al disminuir la temperatura y aumentar la presión de un gas, éste se enfriá y pasa al estado líquido.
17. Estado de agregación en el que las moléculas se mueven o desplazan unas sobre otras, manteniéndose unidas.

Verticales
1. Temperatura a la cual la presión de vapor de un líquido es igual a la presión externa ejercida sobre el líquido.
2. Nombre que recibe el proceso en el cual, al disminuir la temperatura de un líquido éste cambia al estado sólido.
3. Estado de agregación en el que las partículas no pueden desplazarse, sólo vibran en un punto determinado.
4. Proceso en el cual al disminuir la temperatura de un gas, este logra pasar al estado sólido.
5. Proceso en el cual al disminuir la temperatura y aumentar la presión de un gas, éste se enfriá y pasa al estado líquido.
6. Si el vapor de una sustancia se enfriá hasta pasar al estado líquido al proceso se le llama ...
7. Si los líquidos se condensan, los gases se...
8. Al aumentar la temperatura de un líquido, sus partículas aumentan su energía cinética y logran salir en forma gaseosa o liberarse de la superficie, a este proceso se le denomina.
9. Magnitud termodinámica que mide el nivel térmico de un cuerpo.
2.5 Elabora tu proyecto: preguntas e hipótesis de investigación.

- Describe la metodología a utilizar en el diseño de un proyecto de investigación.
- Redacta las preguntas de investigación y las hipótesis necesarias para continuar con la elaboración de su protocolo de investigación.
- Se asume como una persona responsable y ordenada al continuar la realización de su anteproyecto de investigación.

Al procesar la información, el equipo puede construir las preguntas de investigación y las posibles hipótesis.

Una hipótesis es una suposición lógica y constituye una respuesta tentativa o posible que permite explicar lo observado. En ciencias naturales las hipótesis ayudan a orientar la investigación o las siguientes fases del proyecto. Para comprobar la validez de una hipótesis es necesario realizar un experimento que la compruebe o la refute.
ACTIVIDAD EXPERIMENTAL 3
La densidad de los cuerpos materiales

Competencia a desarrollar:

- Mide la masa y el volumen de un cuerpo regular o irregular haciendo uso de los instrumentos adecuados, para determinar su densidad.

Actividades previas

1. Investigar los conceptos: masa, volumen y densidad, así como la forma de expresar las unidades de medición de estas magnitudes.

Preguntas problematizadoras

Al colocar dos bebidas de coca-cola en lata, una versión light y la otra normal, se observó que una de ellas flota y la otra se hunde. La respuesta frecuente del por qué una flota y la otra se hunde; es porque la que flota es light o ligera. Pero esa no es una respuesta satisfactoria. Elabora tu hipótesis y diseña el experimento. Explica, por qué una flota y la otra se hunde.

1. Hipótesis de trabajo

Diseña el experimento y dibuja el montaje.

2. Diseño experimental

¿Qué materiales y sustancias utilizará para llevar a cabo el experimento?

3. Materiales y sustancias
Observaciones.

4. Registro de datos

5. Resultados.
¿Se confirmaron tus hipótesis? Argumenta tus respuestas.

¿Qué procedimiento utilizaste para medir el volumen total de cada lata?

¿Cuál es la densidad que determinaste para la lata de bebida ligth y la normal?

6. Conclusiones
ACTIVIDAD EXPERIMENTAL 4
Métodos de separación de mezclas

Competencia a desarrollar:

- Utiliza métodos físicos en la separación de mezclas, relacionando su importancia en el cuidado de la salud y el ambiente.

Actividades previas

1. Diferenciar los tipos de mezclas y métodos de separación.
2. Indagar qué métodos de separación se utilizan en algún proceso físico o químico de tu localidad.

Preguntas problematizadoras

¿Cómo separar el agua de un refresco de cola?
¿Cómo separar una mezcla de agua y aceite?
¿Cómo separar una mezcla de agua, arena, carbón y sal?

Actividad 1. Separación del agua de un refresco de cola.

¿Cómo separar el agua de un refresco de cola?

1. Hipótesis de trabajo

Diseña el experimento y dibuja el montaje.

2. Diseño experimental
¿Qué materiales y sustancias utilizarás para llevar a cabo el experimento?

3. Materiales y sustancias

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones.

4. Registro de datos

5. Resultados.
¿Se confirmó tu hipótesis? Argumenta tu respuesta.

__

¿Qué problemas encontraste en el desarrollo de tu experimento?

__

¿Qué materiales consideras pueden ser sustituidos por otros en tu experimento?

__

6. Conclusiones
Actividad 2. Separación de una mezcla de agua y aceite.

¿Cómo separar una mezcla de agua con aceite?

<table>
<thead>
<tr>
<th>1. Hipótesis de trabajo</th>
</tr>
</thead>
</table>

Diseña el experimento y dibuja el montaje.

<table>
<thead>
<tr>
<th>2. Diseño experimental</th>
</tr>
</thead>
</table>

¿Qué materiales y sustancias utilizarás para llevar a cabo el experimento?

<table>
<thead>
<tr>
<th>3. Materiales y sustancias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Observaciones.

<table>
<thead>
<tr>
<th>4. Registro de datos</th>
</tr>
</thead>
</table>

5. Resultados.

¿Se confirmó tu hipótesis? Argumenta tu respuesta.

__
__

¿Qué problemas encontraste en el desarrollo de tu experimento?

__
__
Actividad 3. Separación de una mezcla de agua, arena, carbón y sal

¿Cómo separar una mezcla de arena, agua, carbón y sal?

1. Hipótesis de trabajo

Diseña una secuencia de separación, indicando qué material se separa primero y quién al último, señalando el tipo de método utilizado.

2. Diseño experimental

¿Qué materiales y sustancias utilizarás para llevar a cabo el experimento?

3. Materiales y sustancias
Observaciones.

4. Registro de datos

5. Resultados.
¿Se confirmó tu hipótesis? Argumenta tu respuesta.

¿Qué problemas encontraste en el desarrollo de tu experimento? ¿Cómo los resolviste?

6. Conclusiones
ACTIVIDAD EXPERIMENTAL 5
Los cambios en las sustancias

Competencia a desarrollar:

• Utiliza los niveles de representación de la química para describir cambios físicos y químicos de su entorno, tales como la lluvia ácida, la combustión, entre otros.

Actividades previas

1. Diferenciar los tipos de cambios.
2. ¿Qué es la combustión, un indicador ácido-base, la fenolftaleína, un comburente, combustible, indicador natural (té, jamaica, col morada, bugambilía)?
3. ¿Cuáles son las propiedades de azufre y del dióxido de azufre?
4. ¿Cuáles son los componentes principales de una vela?
5. ¿Cómo y por qué se genera la lluvia ácida?

Actividad 1: Combustión de una vela

Preguntas problematizadoras

En la combustión de una vela, ¿cuál es el elemento comburente? ¿Cómo lo compruebas experimentalmente?
Si se le añade agua al recipiente donde se encuentra la vela en combustión, al cubrirla y apagarse, el agua penetra hacia el interior. ¿Cómo explicas este fenómeno?

<table>
<thead>
<tr>
<th>1. Hipótesis de trabajo</th>
</tr>
</thead>
</table>

Diseña el experimento y dibuja el montaje.

<table>
<thead>
<tr>
<th>2. Diseño experimental</th>
</tr>
</thead>
</table>

¿Qué materiales y sustancias utilizarás para llevar a cabo el experimento?

<table>
<thead>
<tr>
<th>3. Materiales y sustancias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Observaciones.

4. Registro de datos

5. Resultados.
¿Se confirmaron tus hipótesis? Argumenta tus respuestas.

¿Qué cambios físicos y químicos observaste?

¿Qué problemas encontraste en el desarrollo de tu experimento? ¿Cómo los resolviste?

6. Conclusiones

Actividad 2: Combustión del azufre y su relación con la lluvia ácida.

La presente imagen, muestra la secuencia de una actividad experimental:

La figura 1 y 2, representa la combustión del azufre en una cucharilla. La figura 3, un matraz con agua, debidamente tapado con la mano para que no escape el gas liberado. Un paso 4, no dibujado, consiste en introducir la cucharilla en el agua del matraz para finalizar la combustión y evitar más desprendimiento de gases tóxicos. Se retira la cucharilla y se coloca un tapón de hule, luego se agita el matraz, para que el gas reaccione con el agua.
Preguntas problematizadoras

Se dice que los gases contaminantes como el dióxido de azufre, dióxido de carbono y los óxidos de nitrógeno al reaccionar con el vapor de agua, forman lluvia ácida. ¿Cómo identificar la presencia del ácido sulfúrico y por consiguiente la acidez del agua en el matraz? ¿Cómo compuebas experimentalmente este cambio?

1. Hipótesis de trabajo

Diseña el experimento y dibuja el montaje.

2. Diseño experimental

¿Qué materiales y sustancias utilizarás para llevar a cabo el experimento?

3. Materiales y sustancias

Observaciones.

4. Registro de datos
Resultados.

¿Se confirmaron tus hipótesis? Argumenta tus respuestas.

¿Qué cambios físicos y químicos observaste?

¿Qué compuesto se produjo al reaccionar el azufre con el oxígeno? ¿Qué ecuación describe este proceso?

Al reaccionar con el agua el gas producido en la combustión, ¿qué compuesto se genera?

¿Qué problemas encontraste en el desarrollo de tu experimento? ¿Cómo los resolviste?

Actividad 3: Formación de carbonato de calcio a partir de cal (óxido de calcio).

Preguntas problematizadoras

¿Qué compuesto se forma al hacer reaccionar el óxido de calcio (cal) con agua?

¿Cómo compruebas que en esta reacción se ha formado una nueva sustancia?

Si tomamos un poco del líquido, lo más transparente posible y borboteamos en él a través de un popote, ¿qué compuesto se forma? ¿Cómo lo comprobarías experimentalmente?

1. Hipótesis de trabajo
Diseña el experimento y dibuja el montaje.

2. Diseño experimental

¿Qué materiales y sustancias utilizarás para llevar a cabo el experimento?

3. Materiales y sustancias

Observaciones.

4. Registro de datos

5. Resultados.
¿Se confirmaron tus hipótesis? Argumenta tus respuestas.

¿Qué cambios físicos y químicos observaste?

¿Qué compuesto se produjo al reaccionar la cal con el agua? ¿Qué ecuación describe este proceso? ¿Cómo lo identificaste?
¿Qué tipo de gas exhalamos en la respiración, los seres humanos? ¿Qué compuesto se produjo al borbotear el gas en el líquido?
__
__
__
__
¿Qué problemas encontraste en el desarrollo de tu experimento? ¿Cómo los resolviste?
__
__
__
__
La estructura atómica y la periodicidad química: dos aspectos importantes
Competencia de unidad

Utiliza el conocimiento acerca de la estructura del átomo para explicar y predecir algunas propiedades de los elementos, su periodicidad y aplicaciones en la vida cotidiana.

El átomo y sus modelos: ¿qué cambios paradigmáticos consideras relevantes?

- Describe la evolución histórica de los modelos atómicos y las aportaciones científicas que dieron lugar al modelo atómico actual.
- Elabora una línea del tiempo para mostrar el desarrollo histórico en el conocimiento de la estructura del átomo e identifica en ella los cambios paradigmáticos más importantes.
- Valora a la ciencia como una construcción social del conocimiento a lo largo de la historia.

1. Problematización

En la historia de la química y en especial en la evolución histórica de los modelos atómicos, ¿qué cambios paradigmáticos consideras más relevantes?

Fig. 3.1 Los distintos modelos atómicos.
Actividad 3.1

Contesta las siguientes preguntas exploratorias.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>En el siglo V a. de C., los filósofos griegos Leucipo y Demócrito plantearon que la materia es de naturaleza discontinua, es decir está formada por átomos.</td>
<td>F</td>
</tr>
<tr>
<td>2.</td>
<td>Aristóteles, contrario a la postura atomística, pensaba que la materia es de naturaleza continua.</td>
<td>F</td>
</tr>
<tr>
<td>3.</td>
<td>En pleno siglo XXI, se piensa, se afirma y se comprueba que la materia es de naturaleza continua.</td>
<td>F</td>
</tr>
<tr>
<td>4.</td>
<td>John Dalton, en 1808 postuló que el átomo es como una esfera sólida, compacta y neutra.</td>
<td>F</td>
</tr>
<tr>
<td>5.</td>
<td>El descubrimiento del electrón en 1897, llevó a J.J. Thomson a proponer un modelo planetario del átomo.</td>
<td>F</td>
</tr>
<tr>
<td>6.</td>
<td>En realidad el modelo planetario fue propuesto por E. Rutherford.</td>
<td>F</td>
</tr>
<tr>
<td>7.</td>
<td>El modelo atómico de J.J. Thomson se le conoce como el modelo del budín con pasas.</td>
<td>F</td>
</tr>
<tr>
<td>8.</td>
<td>Si los átomos son eternos y se incorporan al agua, aire y Tierra, ¿existe la probabilidad de que uno o varios de los átomos que constituyen tu cuerpo hayan pertenecido a un dinosaurio?</td>
<td>F</td>
</tr>
<tr>
<td>9.</td>
<td>Más de 2000 años llevó aceptar la teoría atomística. Esto muestra la dificultad en el cambio de paradigma. Sin embargo, en el siglo XX, los cambios paradigmáticos sobre la teoría atomística fueron más acelerados.</td>
<td>F</td>
</tr>
<tr>
<td>10.</td>
<td>El modelo atómico de Bohr es un modelo de capas o niveles de energía.</td>
<td>F</td>
</tr>
<tr>
<td>11.</td>
<td>El modelo atómico actual considera que alrededor del núcleo del átomo, los electrones giran en órbitas no definidas, formando una especie de nube electrónica.</td>
<td>F</td>
</tr>
<tr>
<td>12.</td>
<td>La evolución histórica sobre el concepto de átomo, nos permite afirmar que la ciencia es producto de la construcción social del conocimiento a lo largo de la historia.</td>
<td>F</td>
</tr>
<tr>
<td>13.</td>
<td>Cuando en Europa se estaba proponiendo el modelo compacto del átomo, en la Nueva España se gestaba el movimiento independentista.</td>
<td>F</td>
</tr>
</tbody>
</table>
2. Adquisición y organización de la información

Actividad 3.2
En forma colaborativa participa mediante la técnica del rompecabezas, en la lectura del átomo y sus modelos, estableciendo tiempos para la lectura y exposición de la misma.

El átomo y sus modelos
Desde la antigüedad inquietaba al ser humano el origen del universo, pero además, el descifrar cómo estaba constituida la materia era uno de los retos. Las primeras ideas de que la materia es de naturaleza discontinua y que está formada por átomos, se remonta al siglo V a de C., con las ideas de Leucipo y Demócrito.

Para Demócrito, la muerte no existía. Estaba convencido de que los átomos son eternos y que cuando una persona muere, sus átomos se incorporan al aire, al agua y a la Tierra. Pero en aquélla y posteriores épocas, estas hipótesis no fueron aceptadas.

De acuerdo con lo anterior, existe la posibilidad de que alguno o muchos de los átomos que forman tu cuerpo haya pertenecido a un dinosaurio. ¿Tú qué opinas?

La palabra átomo en griego significa indivisible o que no se puede partir. Otros griegos como Empédocles y Aristóteles, haciendo uso de la percepción y la lógica, más no de la experimentación, consideraron que la materia era continua y que no estaba formada por átomos. Esta idea perduró desafortunadamente más de 2000 años, debido a la influencia intelectual de Aristóteles, quien rechazó la idea del átomo.

Actividad 3.3
Indaga en diversas fuentes electrónicas o bibliográficas, qué filósofos contribuyeron al planteamiento de la teoría de los cuatro elementos, qué plantea dicha teoría y si en realidad alguno de éstos componentes son elementos químicos.

El renacimiento del atomismo
Los trabajos de John Dalton marcaron los inicios del desarrollo de la química del siglo XIX. Dalton, quien en ese entonces era profesor de matemáticas y filosofía en Manchester, estaba interesado en la meteorología y la composición de la atmósfera e intentaba explicar
las diferencias de solubilidad de varios gases en el agua y encontró que muchas de las propiedades de estas sustancias, se podían explicar si se consideraba que estaban formadas por partículas. Esto lo llevó a postular su teoría atómica, basada en la experimentación y en las leyes químicas.

¿Sabías que...

El **daltonismo** es un trastorno genético que se denomina así porque el físico británico John Dalton, descubrió y estudió en sí mismo esta enfermedad, que consiste en la imposibilidad de distinguir los colores? Aunque ningún daltónico confunde los mismos colores, de manera frecuente confunden el rojo y el verde.

¿Sabías que...

Dalton se equivocó al proponer una relación de combinación 1:1 entre el hidrógeno y el oxígeno, y establecer que la fórmula del agua era HO?

Teoría de Daltón

1. La materia está constituida de pequeñas partículas denominadas «átomos».
2. Los átomos de un elemento dado son idénticos en masa, tamaño y propiedades químicas.
3. Los átomos de elementos diferentes son diferentes.
4. Los átomos son esféricos, compactos, indivisibles e indestructibles.
5. En una reacción química los átomos se separan, se combinan o se reordenan.
6. Los átomos de elementos diferentes se unen en relaciones numéricas simples para formar átomos compuestos (término que usó para referirse a lo que hoy denominamos molécula).

Fig. 3.3 Teoría de Dalton.

Es importante tener en cuenta que la teoría de Dalton describe adecuadamente lo mejor del pensamiento de su tiempo, y que aún, cuando encontremos que algunos de sus postulados no son válidos a la luz de los nuevos descubrimientos. Debemos reconocer que sus teorías sirvieron como punto de partida para la evolución del pensamiento científico. Por ejemplo, de la teoría de Dalton podemos destacar las definiciones de átomo, elemento y compuesto.

Conozca más...

John Dalton nació el 6 de septiembre de 1766, en Eaglesfield, Cumberland (hoy Cumbria), Inglaterra.

Comenzó a desarrollar su teoría atómica en 1803 y en 1808 publicó su obra *Nuevo sistema de filosofía química*, en el cual listaba las masas atómicas de varios elementos conocidos en relación con la masa del hidrógeno.

Dalton se imaginó a los átomos como esferas compactas y utilizó pictogramas para representarlos, pero además consideró que se combinaban en la relación más simple, HO, NH, CO, etc.

A la edad de 26 años (1792), Dalton descubrió que ni él ni su hermano eran capaces de distinguir los colores. Se dió cuenta de ello, cuando le regaló a su madre unas medias (que él creía azules) y ella le preguntó sorprendida cuál era la razón por la que le daba unas medias de color rojo escarlata, que no era apropiado para una mujer cuáquera. En su primer artículo científico importante, John Dalton proporcionó una descripción científica sobre este fenómeno que posteriormente se conoció con el nombre de daltonismo. Murió en Manchester en 1844.
Del átomo compacto, al descubrimiento del electrón

Desde la época de John Dalton muchos experimentos habían permitido comprobar que los átomos realmente existen. Por tanto, el conjunto de interrogantes, ahora se enfocaba a cuestionarse, ¿de qué están constituidos los átomos?, ¿son realmente indivisibles e indestructibles?, ¿qué hace diferente a un átomo de un elemento al de otro?, ¿qué relación existe entre la materia y la energía?

La naturaleza eléctrica de la materia se conocía desde la antigüedad, pero fue hasta el siglo XIX que los científicos desarrollaron un modelo para explicarla. Los distintos experimentos con la corriente eléctrica desarrollados por Humphry Davy y Michael Faraday, permitieron establecer la naturaleza eléctrica de los átomos. Una de las conclusiones más importantes de Faraday, fue que la corriente eléctrica al igual que la materia, estaba formada por «átomos» de electricidad, unitarios e indivisibles. Observó además, que tanto sólidos como líquidos, podían transmitir la corriente eléctrica e intentó hacer pasar electricidad a través de un tubo de vidrio al cual le había extraído el aire, pero fracasó en sus intentos.

Fue hasta mediados del siglo XIX que los trabajos de Julius Plucker, Wilhelm Hittorf y William Crookes, permitieron observar el paso de la corriente eléctrica en un tubo de vidrio, al alcanzar un buen nivel de vacío y utilizar para ello, una pantalla fluorescente de sulfuro de zinc; a estos rayos luminosos se les denominó rayos catódicos, al descubrir que éstos se dirigían del cátodo(-) al ánodo(+).

¿De qué naturaleza eran estos rayos?

Mucho se especuló acerca de la naturaleza de los rayos catódicos, pero la respuesta correcta se atribuye al físico inglés Joseph John Thomson quien en 1897, repitió los experimentos realizados por otros investigadores. Sus resultados demostraron que los rayos catódicos presentaban las siguientes características:

1. Los rayos eran desviados por campos magnéticos y eléctricos: la desviación revelaba el tipo de carga eléctrica, eran negativos.
2. Los rayos hacían mover las aspas de un pequeño rehilete, lo que indicaba que estaban constituidos de materia, presentaban masa e inercia. Eran partículas y no rayos como se suponía.

En 1897, J.J.Thomson logró medir el valor de la relación carga-masa de estas partículas, por ello fue considerado el descubridor del electrón:

\[
\frac{e}{m} = 1.759 \times 10^{11} \text{ C/kg}
\]

En 1909 el físico norteamericano Robert Millikan determinó experimentalmente la carga del electrón, con su famoso experimento de la gota de aceite. El valor actual de la carga, es de

\[e = 1.602 \times 10^{-19} \text{ C (coulombios)} \]

Al conocer la carga del electrón y la relación carga-masa Millikan determinó la masa de un solo electrón.

\[m = \frac{1.602 \times 10^{-19} \text{ C}}{1.759 \times 10^{11} \text{ C/kg}} = 9.108 \times 10^{-31} \text{ kg} \]

Al caracterizar al electrón, como partícula con carga y masa, era evidente que éste formaba parte de la materia, y si la materia está formada por átomos, los átomos debían tener electrones. Thomson pensó entonces, que si los cuerpos son eléctricamente neutros, los átomos también debían serlo. Si tienen carga negativa, deben tener también carga positiva y la suficiente para neutralizarla. Con estas afirmaciones Thomson propuso un modelo de átomo en 1904, pero al igual que él, en 1902 lord Kelvin (William Thomson) había propuesto que el átomo estaba constituido de una esfera positiva uniforme, dentro de la cual se encontraban inmersos los electrones.

El átomo, como un todo, era eléctricamente neutro. A este modelo se le conoce como “pudín o budín con pasas”.

Thomson consideró al átomo como una esfera de carga positiva en la cual se encuentran inmersos los electrones, de forma similar a como se colocan las pasas en una gelatina.

Fig. 3.6 Modelo atómico de Thomson.

¿Sabías que...

el físico irlandés George Johnstone Stoney, desde 1874 había sugerido el término electrón para la misma carga eléctrica negativa que se manifestaba en los fenómenos electrolíticos?
Años después, el físico francés Jean Perrin propuso un nuevo modelo, que a diferencia del modelo atómico de Thomson, planteaba que los electrones se encontraban fuera de la esfera positiva.

El protón y los rayos canales

En honor a la verdad, los protones ya habían sido descubiertos en 1886 por Eugene Goldstein, quien al observar cierta luminosidad detrás del cátodo, se dio a la tarea de investigar el fenómeno. Para ello, perforó el cátodo y observó que los rayos luminosos, atravesaban los orificios o «canales» en sentido contrario a los rayos catódicos, debido a esta particularidad les denominó rayos canales. Años más tarde, se descubrió que estos rayos eran iones positivos, que se formaban al ser ionizado el gas presente en el tubo de descarga, debido a la acción del flujo de electrones. Con la experiencia de la caracterización del electrón, fue más fácil determinar la relación carga-masa del protón.

Wilhelm Wien en 1898 determinó la relación carga-masa del protón y de haberse utilizado la misma lógica para designar al descubridor del electrón, entonces Wien debió ser considerado el descubridor del protón, pero no fue así. Fue hasta 1919 que Ernest Rutherford logró aislar e identificar a un protón, por ello se le considera el descubridor de esta partícula subatómica, ya antes había sugerido su presencia en el núcleo atómico.

La masa relativa del protón resultó ser 1837 veces mayor que la del electrón.

Dos nuevos descubrimientos: Los rayos X y la radiactividad

Los últimos años del siglo XIX fueron el escenario de dos grandes descubrimientos: los rayos X y la radiactividad, que permitieron escudriñar en la estructura atómica y perfeccionar el modelo. Puede decirse que ambos descubrimientos se debieron a situaciones accidentales o más bien a la Serendipia en la ciencia.

¿Sabías que...

el término serendipia es sinónimo de chiripa y que ambos se utilizan para denotar que el descubrimiento o solución de un problema, ha sido resuelto de manera accidental? Un ejemplo de ello, según Umberto Eco es el descubrimiento mismo de América, como lo puede ser también el principio de Arquímedes y el descubrimiento mismo de los rayos X.
Röentgen y los rayos X

En 1895, Wilhelm Konrad Röentgen trabajaba con un tubo de rayos catódicos, cuando inesperadamente una pantalla fluorescente que se encontraba fuera del aparato emitió luz. Röentgen concluyó que del tubo salía un tipo de rayos desconocidos, capaces de atravesar el vidrio, el cartón y la piel. Lo más impactante sucedió cuando agitó su mano entre la fuente de radiación y la pantalla, pudo ver la sombra de los huesos de su propia mano.

Esto causó revuelo en la sociedad de aquella época, tanto que en Nueva Jersey se discutió la aprobación de una ley que prohibiese el uso de prismáticos de rayos X; dado que los misteriosos rayos Röentgen eran capaces de atravesar el vestido y el corsé.

Una poesía que describe con bastante exactitud el sentir de aquella época, es la siguiente:

Los rayos Röentgen, los rayos Röentgen
¿qué es esta locura?
La ciudad está que arde
con la llegada
de los rayos X
estoy aturdido,
horrorizado y asombrado.
Pues ahora,
he oído que verán
a través de la capa y los vestidos e incluso del corsé
¡Estos pícaros rayos Röentgen!

Sin embargo, este descubrimiento pasó a ser una de las herramientas más importantes en el diagnóstico médico y actualmente sigue siendo utilizado para examinar huesos rotos, objetos extraños en el cuerpo, pulmones enfermos, y aún más, para detectar contrabando en aeropuertos y envíos postales. Este descubrimiento le valió a Röentgen el primer premio Nobel de Física en 1901.
Años más tarde se descubrió que los rayos X, son de naturaleza ondulatoria y de alta frecuencia, que pueden atravesar la piel, el aluminio, la madera, entre otros. Hoy sigue siendo uno de los descubrimientos más importantes con aplicación en medicina, en metalurgia, cristalografía, etc.

Becquerel y la radiactividad

El descubrimiento de los rayos X, llevó al físico francés Henri Becquerel en 1896, a tratar de producir rayos X a partir de sales de uranio; sulfato de potasio y uranilo, \((\text{K}_2\text{SO}_4 \cdot \text{(UO)}_2\text{SO}_4 \cdot 2\text{H}_2\text{O})\). Pensaba que al exponerlas a la luz solar podría conseguir su propósito, ya que sabía que eran luminiscentes y que producían fluorescencia después de haber estado expuestas a dicha luz.

Para mayor seguridad decidió realizar de nuevo el experimento, envolvió otra placa fotográfica en papel negro y colocó sobre ella el cristal de sal de uranio, pero en ese mismo instante el cielo se nubló y no volvió a salir el Sol durante los tres días siguientes. Finalmente arrastrado por la curiosidad y la impaciencia, Becquerel decidió revelar la placa fotográfica, esperando ver la silueta casi imperceptible. Pero cual sería su sorpresa, al observar que la silueta era tan nítida como si la hubiera expuesto al Sol.

¿Qué explicación podía tener aquello?

Los experimentos posteriores llevaron a Becquerel a concluir, que la radiación procedente de las sales de uranio no tenía nada que ver con el fenómeno de fluorescencia, sino que era una característica propia del uranio. Se había descubierto así, un nuevo fenómeno.

Esto despertó el interés de otros científicos, que se dieron a la tarea de investigar esta nueva radiación o rayos «Becquerel», como se les denominó. Entre ellos se encontraban los esposos Curie. Fue Maria Sklodowska Curie, quien bautizó este fenómeno con el nombre de radiactividad, sus investigaciones la llevaron al descubrimiento de dos nuevos elementos radiactivos: el radio y el polonio.
la radiactividad, es un fenómeno natural y espontáneo que consiste en la emisión de partículas alfa, beta y rayos gamma debido a la desintegración de ciertos núcleos atómicos inestables.

¿Cuál era la naturaleza de esa radiación?

En un principio se pensó que las emanaciones eran rayos. Los descubrimientos realizados por Rutherford, Thomson y Willard, permitieron descubrir la naturaleza de los rayos Becquerel y encontraron que en presencia de un campo magnético o eléctrico intenso estos se separaban en tres tipos de radiaciones.

Un tipo de radiación era atraída hacia el polo negativo del campo eléctrico, lo que indicaba la presencia de una carga positiva en ellos, éstos fueron denominados rayos alfa (α). Los que fueron atraídos hacia el polo positivo, demostrando así su naturaleza eléctrica negativa, se les denominó rayos beta (β). La tercera eminación no sufría desviación alguna por los campos eléctricos y magnéticos, lo que indicaba la ausencia de carga en ella, fueron denominados rayos gamma (γ).

Tabla 3.1 Características de los rayos alfa, beta y gamma.

<table>
<thead>
<tr>
<th>Rayos</th>
<th>Naturaleza</th>
<th>Carga</th>
<th>Poder de penetración</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Partículas con la masa de un núcleo de helio.</td>
<td>$+2$</td>
<td>Poco (menos de medio mm de espesor)</td>
</tr>
<tr>
<td>β</td>
<td>Electrones acelerados. Producto de la desintegración de un neutrón.</td>
<td>-1</td>
<td>Regular (menos de 3 mm de espesor).</td>
</tr>
<tr>
<td>γ</td>
<td>Radiación electromagnética semejante a los rayos X.</td>
<td>0</td>
<td>Mucho (entre 5-10 cm de espesor).</td>
</tr>
</tbody>
</table>

¿Sabías que...

Fig. 3.15 Poder de penetración de los rayos alfa, beta y gamma.
Conozca más... de nuestros científicos mexicanos

El tubo de rayos catódicos y la TV

Es en los años 20 cuando comienza a tomar forma la televisión, gracias a la aportación e invención de muchos científicos; una de esas invenciones es el tubo de rayos catódicos. La mayoría de las pantallas de televisión tienen un tubo de rayos catódicos, el cual produce un haz de electrones. Los circuitos que hay dentro de la televisión procesan y amplifican la señal electrónica recibida de la estación de televisión. Esta señal es enviada a diferentes partes de la pantalla por los campos magnéticos.

La televisión monocromática o en blanco y negro, como así se le conoció, tuvo un gran éxito comercial, pero las investigaciones por lograr una televisión a color continuaron.

En México, el ingeniero Guillermo González Camarena, realizó experimentos en televisión a partir de 1934, pero fue hasta 1946, que se puso en funcionamiento la primera estación de TV en la ciudad de México, Canal 5. González Camarena nació en 1917 en Guadalajara, Jalisco y murió en 1965 pero en su corta vida logró impactar al mundo al inventar la televisión en color, gracias a su Sistema Tricromático Secuencial de Campos. Obtuvo la patente de su invento tanto en México como en Estados Unidos el 19 de agosto de 1940. Por todos estos hechos, se le conoce al ingeniero González Camarena como el «Padre de la televisión mexicana».

Cómo funciona

1. La televisión recibe una señal electrónica de una estación de televisión a través de una antena o cable.

2. Los circuitos electrónicos procesan y amplifican la señal.

3. Los rayos electrónicos se dirigen hacia el extremo de la pantalla donde se encuentra el tubo de rayos catódicos.

El material fosforescente en la pantalla brilla en rojo, verde y azul. Las combinaciones de colores fosforescentes forman la imagen de la pantalla.

La radiactividad proporcionó la clave para revelar los secretos del átomo. ¿Cómo se logró esto? ¿De qué forma se consiguió penetrar en el átomo y comprobar si era o no un budín de pasas? En 1911, Ernest Rutherford con su experimento de dispersión de partículas alfa, daría la pauta para interpretar la distribución de las partículas en el átomo y con ello, el nacimiento de un nuevo modelo atómico.

El experimento de dispersión de las partículas alfa

Rutherford pensó, que las partículas alfa podrían constituir proyectiles adecuados para hacerlos incidir sobre láminas de oro, lo suficientemente delgadas, como para que fuese máxima la probabilidad de que una partícula alfa, sólo fuera dispersada por un único átomo durante el tiempo que tardaba en atravesar la lámina.

¿Qué cabría esperar que ocurriese al bombardear las láminas delgadas de oro, con las partículas alfa?

Los primeros resultados fueron compatibles con el modelo de Thomson: mostraron que aparentemente todas las partículas alfa atraviesan la lámina sin desviarse. Sin embargo, en posteriores investigaciones se encontró que había desviaciones del orden de un grado. Ante esto, Geiger le sugirió a Rutherford que encargara a Marsden, investigar si existían partículas alfa que se dispersaban en ángulos más grandes.

¿Qué es lo que se encontró en realidad?

Dejemos que sea el propio Rutherford el que nos responda:

“En confianza les confesaré que no creía yo que esto fuera posible... la probabilidad de que una partícula alfa sufriese una dispersión hacia atrás era muy pequeña. Recuerdo que dos o tres días más tarde vino Geiger todo excitado y me dijo: «Hemos logrado que algunas de las partículas alfa volviesen hacia atrás». Fue la cosa más increíble que jamás me haya podido ocurrir en mi vida. Era casi tan increíble como que disparásemos una bala de 15 pulgadas sobre un papel de seda, volviese y nos hiriese”.

¿Qué implicaciones tenía este descubrimiento sobre la estructura del átomo?

De nuevo es Rutherford quien lo describe maravillosamente:

“Recapacitando llegué al convencimiento de que esta dispersión hacia atrás debía ser consecuencia de una única colisión, y tras hacer cálculos comprendí que era imposible obtener algo de ese orden de magnitud, al menos que se tomase como punto de partida un sistema en el que la mayor parte de la masa del átomo estuviera concentrada en un núcleo diminuto. Fue entonces cuando me vino la idea de un átomo con un núcleo diminuto de gran masa y portador de una cierta carga”.

¿Sabías que...

la luz visible no se puede utilizar para observar un átomo, porque su longitud de onda es aproximadamente 1000 veces mayor que el tamaño de un átomo?
Fig. 3.16 Expermento de Rutherford de la dispersión de las partículas alfa. Aquí se ilustra la repulsión de las partículas alfa positivas por el núcleo positivo de los átomos metálicos de oro.

Modelo atómico de Rutherford

Los resultados de sus experimentos llevaron a Ernest Rutherford en 1911, a concluir que los átomos poseen un núcleo positivo muy pequeño, alrededor del cual se mueven los electrones.

Su modelo se conoce como el modelo del sistema planetario, el cual entró rápidamente en contradicción con la teoría electromagnética de Maxwell de aquel tiempo, al no poder explicar cómo estarían los electrones girando alrededor del núcleo sin emitir energía. Más tarde, se demostraría que las leyes del mundo macroscópico no rigen las del mundo submicroscópico.

Fig. 3.17 Modelo atómico de Rutherford
Modelo atómico de Bohr

En 1913, el científico danés Niels Bohr basado en los descubrimientos de Rutherford y en la teoría cuántica de Max Planck, dio respuesta a las supuestas fallas del modelo de Rutherford, al proponer lo siguiente:

1. Que en efecto, el átomo tiene un núcleo central diminuto cargado positivamente.
2. Que los electrones no pueden estar distribuidos al azar, sino que giran alrededor del núcleo ocupando niveles discretos de energía (órbitas circulares).
3. Los electrones pueden alcanzar niveles de energía más altos por la absorción de cantidades fijas de energía (paquetes o cuantos de energía).
4. Los electrones que caen a niveles más bajos de energía, emiten cantidades fijas de energía (fotones o cuantos de luz).

Con base en estos postulados y a los estudios de los fenómenos espectrales, Bohr logró proponer un modelo planetario para el átomo de hidrógeno.

Los espectros de los elementos y el modelo de Bohr

Bohr, planteó que cada elemento contenía líneas espectrales características que correspondían exactamente a las energías emitidas por los electrones, cuando pasaban de un nivel a otro, y que cada línea del espectro correspondía a la energía liberada o absorbida en estas transiciones.

¿Sabías que...

en 1900, el físico alemán Max Planck, planteó que los cuerpos absorben y emiten energía en unidades pequeñas denominadas «cuantos», del latín *quantum*, o «pequeña cantidad», conocido también como «paquete de energía»? Para Max Planck, el valor de esta energía se determina al multiplicar la frecuencia de la radiación por la constante que lleva su apellido (constante de Planck).
¿Qué son las líneas espectrales?

A finales del siglo XIX, los físicos sabían que había electrones dentro de los átomos y que la vibración de los electrones producía luz y otras radiaciones electromagnéticas.

También sabían que cuando la luz solar pasa a través de un prisma, ésta se refracta separándose en todos sus colores (componentes).

Pero, cuando los físicos calentaban diferentes elementos como el hidrógeno, el sodio, el hierro, etc., hasta que estaban radiantes, y dirigían la luz a través de un prisma, observaban que no aparecía el arco iris completo. En su lugar se obtenían líneas brillantes de ciertos colores denominadas **líneas espectrales de emisión**.

Además al analizar el espectro proveniente de la luz solar o de otra estrella apreciaron la presencia de «huecos» en el espectro, que supusieron que correspondían a las longitudes de onda absorbidas por los átomos encontrados en su paso. A este tipo de espectros se les denomina **espectros de absorción**.

Los espectros atómicos fueron la clave que permitieron deducir la estructura electrónica de los átomos. Cada átomo es capaz de emitir o absorber radiación electromagnética, aunque solamente en algunas frecuencias que le son características. El conjunto de líneas espectrales son la «huella digital» de los átomos. A continuación se muestran los espectros de emisión de algunos elementos.
Niveles de energía

Cada uno de los niveles de energía corresponde según Bohr, a una posible órbita del electrón alrededor del núcleo. Bohr representó cada nivel de energía con números del 1 al 7, introduciendo con ello, el primer número cuántico \(n \), el cual recibió el nombre de número cuántico principal.

<table>
<thead>
<tr>
<th>Órbitas</th>
<th>(n)</th>
<th>distancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0,53 Å</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2,12 Å</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>4,76 Å</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>8,46 Å</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>13,22 Å</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>19,05 Å</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>25,93 Å</td>
</tr>
</tbody>
</table>

¿Pero cuántos electrones podían estar en cada nivel?

Bohr para intentar dar respuesta a esta interrogante, tuvo que hacer uso de una de las herramientas más importantes: La tabla periódica. Esto le permitió llegar a la expresión \(2n^2 \), donde \(n \) representa a cada nivel de energía.

De acuerdo con esta expresión, en el primer nivel de energía sólo pueden distribuirse 2 electrones, en el segundo 8 y en el tercero 18.

Bohr al aplicar esta distribución electrónica a los elementos alcalinos, encontró que los dos primeros elementos terminaban su distribución con un electrón en el último nivel, pero en el caso del potasio con \(Z=19 \), al distribuir sus electrones quedaban 9 en el último nivel; dado que el tercer nivel puede tener un máximo de 18 electrones.

Este resultado no coincidía con los del litio y el sodio, a pesar de pertenecer a un mismo grupo y de tener propiedades semejantes, por lo que Bohr propuso, para este caso en particular, que el tercer nivel se llenaba parcialmente con 8 electrones. Esto permitió posteriormente establecer que la última órbita, capa o nivel de energía de un átomo, nunca debe exceder en 8, el número de electrones.
¿Sabías que...

el modelo de Bohr tuvo validez sólo para aquellos átomos que tienen un solo electrón? Este modelo no pudo explicar el comportamiento de los átomos con mayor número de electrones, dado que los espectros para tales átomos se volvían más complejos. Pudo explicar las líneas gruesas del espectro del átomo de hidrógeno, pero cuando éstas fueron sometidas a un campo magnético se descubrió que se separaban en líneas más finas (Efecto Zeeman), esto no pudo ser explicado por Bohr.

Pieter Zeeman, físico holandés, descubrió que al someter a un fuerte campo magnético las líneas normales del espectro de hidrógeno, éstas se desdoblan en líneas más finas, muy próximas entre sí. A este fenómeno se le denominó efecto Zeeman.
La respuesta llegó en 1916 con Arnold Sommerfeld, al proponer que los electrones además de girar en órbitas circulares, también podían girar en órbitas elípticas. Para explicar lo anterior, Sommerfeld propuso la existencia de niveles y subniveles de energía dentro del átomo y con ello, la propuesta de un nuevo número cuántico que determinaba un número mayor de órbitas por donde podía girar el electrón.

número cuántico secundario

Modelo atómico de Bohr Sommerfeld

3. Procesamiento de la información

Actividad 3.4

En forma colaborativa elabora una línea del tiempo que muestre los acontecimientos más importantes sobre el conocimiento de la estructura del átomo hasta el modelo de Bohr.
Actividad 3.5

Completa el siguiente cuadro, utilizando la expresión algebraica de Bohr para determinar el número de electrones posibles para cada nivel de energía.

<table>
<thead>
<tr>
<th>Expresión algebraica</th>
<th>Nivel de energía</th>
<th>Número de electrones</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2 n^2$</td>
<td>$2(1)^2$</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>$2(2)^2$</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>$2(3)^2$</td>
<td>18</td>
</tr>
</tbody>
</table>

Actividad 3.6

En forma individual o colaborativa, utiliza la expresión algebraica $2n^2$ para distribuir los electrones en los siguientes modelos de Bohr para átomos con números atómicos de $Z=1$ a $Z=11$. Para reafirmar el aprendizaje, te invitamos a que visites el sitio http://dgep.uasnet.mx/quimica/material/trans_int/Estructura_Atomica/bohr.html.

<table>
<thead>
<tr>
<th>Hidrógeno</th>
<th>Helio</th>
<th>Litio</th>
<th>Berilio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1p^+ 1e^-$</td>
<td>$2p^+ 2n 2e^-$</td>
<td>$3p^+ 4n$</td>
<td>$4p^+ 5n$</td>
</tr>
<tr>
<td>$Z=1$</td>
<td>$Z=2$</td>
<td>$Z=3$</td>
<td>$Z=4$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boro</th>
<th>Carbono</th>
<th>Nitrógeno</th>
<th>Oxígeno</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5p^+ 6n$</td>
<td>$6p^+ 6n$</td>
<td>$7p^+ 7n$</td>
<td>$8p^+ 8n$</td>
</tr>
<tr>
<td>$Z=5$</td>
<td>$Z=6$</td>
<td>$Z=7$</td>
<td>$Z=8$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flúor</th>
<th>Neón</th>
<th>Sodio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$9p^+ 10n$</td>
<td>$10p^+ 10n$</td>
<td>$11p^+ 12n$</td>
</tr>
<tr>
<td>$Z=9$</td>
<td>$Z=10$</td>
<td>$Z=11$</td>
</tr>
</tbody>
</table>
4. Aplicación de la información

Actividad 3.7

Resuelve las siguientes situaciones problémicas.

1. Relaciona las columnas siguiendo la línea del tiempo, sobre el conocimiento de la estructura del átomo.

<table>
<thead>
<tr>
<th>Investigador</th>
<th>Evento</th>
<th>Año</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. E. Rutherford</td>
<td>a) Descubrimiento de los Rayos X</td>
<td>1. 1803</td>
</tr>
<tr>
<td>II. J. J. Thomson</td>
<td>b) Descubrimiento del Electrón</td>
<td>2. 1895</td>
</tr>
<tr>
<td>III. J. Dalton</td>
<td>c) Descubrimiento de la Radiactividad</td>
<td>3. 1896</td>
</tr>
<tr>
<td>IV. W. Rôentgen</td>
<td>d) Postuló la Teoría Atómica</td>
<td>4. 1897</td>
</tr>
<tr>
<td>V. H. Becquerel</td>
<td>e) Descubrimiento del Núcleo Atómico</td>
<td>5. 1911</td>
</tr>
</tbody>
</table>

2. Escriba en los espacios de la siguiente figura, el nombre del investigador que propuso cada modelo atómico y relaciona a cada uno de estos modelos con su respectivo nombre.

- **(1803)**
- **(1904)**
- **(1911)**
- **(1913)**

a. Modelo de capas; órbitas circulares o niveles de energía

b. Modelo del budín con pasas

c. Modelo del átomo compacto

d. Modelo del átomo nuclear
3. Cuando en Europa John Dalton proponía una teoría atomica y en consecuencia un modelo de átomo, ¿qué sucedía en el México de esa época?

__

__

4. Cuando en Europa Ernest Rutherford proponía el modelo del átomo nuclear, en ese mismo año, ¿qué acontecimientos cambiaban el rumbo de México?

__

__

5. «Los átomos de los elementos en estado gaseoso al ser excitados, producen espectros discontinuos característicos que deben reflejar su estructura electrónica». Esta conclusión experimental de Niels Bohr, ¿tiene alguna relación con los colores que aparecen en los fuegos pirotécnicos?

__

__

6. «El átomo no es indivisible ya que al aplicar un fuerte voltaje a los átomos de un elemento en estado gaseoso, estos emiten partículas con carga negativa». Qué científico llega a esta conclusión tras descubrir la existencia de los electrones.

__

__

7. «Al bombardear los átomos de una lámina delgada con partículas cargadas positivamente (partículas alfa), la mayoría pasa sin ser desviadas, pero algunas son rechazadas por un pequeño núcleo positivo situado en el centro del átomo». Con esta conclusión se llegaba al descubrimiento del núcleo atómico, ¿qué científico fue capaz de tal hazaña?

__

__

8. Si comparamos los modelos atómicos de Rutherford y Bohr, cuáles son las diferencias y las semejanzas entre ambos.

<table>
<thead>
<tr>
<th>Semejanzas</th>
<th>Diferencias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Autoevaluación

Actividad 3.8

Responde de nuevo a las preguntas iniciales de falso-verdadero y fundamenta tu respuesta.

<table>
<thead>
<tr>
<th>Pregunta</th>
<th>Fundamentación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. En el siglo V a de C., los filósofos griegos Leucipo y Demócrito plantearon que la materia es de naturaleza discontinua, es decir está formada por átomos.</td>
<td></td>
</tr>
<tr>
<td>2. En pleno siglo XXI, se piensa, se afirma y se comprueba que la materia es de naturaleza continua.</td>
<td></td>
</tr>
<tr>
<td>3. John Dalton, en 1808 postuló que el átomo es como una esfera sólida, compacta y neutra.</td>
<td></td>
</tr>
<tr>
<td>5. En realidad el modelo planetario fue propuesto por Ernest Rutherford.</td>
<td></td>
</tr>
<tr>
<td>6. El modelo atómico de J.J.Thomson se le conoce como el modelo del budín con pasas.</td>
<td></td>
</tr>
<tr>
<td>7. Más de 2000 años llevó aceptar la teoría atomística. Esto muestra la dificultad en el cambio de paradigma. Sin embargo, en el siglo XX, los cambios paradigmáticos sobre la teoría atomística fueron más acelerados.</td>
<td></td>
</tr>
<tr>
<td>8. El modelo atómico de Bohr es un modelo de capas o niveles de energía.</td>
<td></td>
</tr>
<tr>
<td>9. Si los átomos son eternos y se incorporan al agua, aire y Tierra, existe la probabilidad de que uno o varios de los átomos que constituyen tu cuerpo perteneció a un dinosaurio.</td>
<td></td>
</tr>
<tr>
<td>10. La evolución histórica sobre el concepto de átomo, nos permite afirmar que la ciencia es producto de la construcción social del conocimiento a lo largo de la historia.</td>
<td></td>
</tr>
</tbody>
</table>
Rúbrica para evaluar la exposición de cada equipo

<table>
<thead>
<tr>
<th>Nombre del equipo:</th>
<th>__________________________</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Integrantes</th>
<th>Calificación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aspectos</th>
<th>Criterios</th>
<th>Indicadores</th>
<th>MB (20)</th>
<th>B (15)</th>
<th>S (10)</th>
<th>INS (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición</td>
<td>Dominio del tema</td>
<td>Se expone el tema en forma clara y eficiente.</td>
<td>Ex pone el tema con claridad y no se recurre a la lectura textual</td>
<td>Se expone el tema con claridad pero se recurre en ocasiones a las notas escritas</td>
<td>Se observa poco dominio del tema y se recurre frecuentemente a las notas escritas</td>
<td>No se observa dominio del tema.</td>
</tr>
<tr>
<td></td>
<td>Organización de la exposición</td>
<td>Los expositores muestran organización.</td>
<td>Se muestra excelente organización</td>
<td>Se muestra buena organización</td>
<td>Se muestra cierta desorganización</td>
<td>Se muestra una completa desorganización</td>
</tr>
<tr>
<td></td>
<td>Tiempo</td>
<td>El equipo utiliza el tiempo adecuado</td>
<td>Utiliza de manera excelente el tiempo establecido para la exposición.</td>
<td>El equipo utiliza un poco menos del tiempo establecido para su exposición.</td>
<td>El equipo utiliza muy poco tiempo del establecido para la exposición.</td>
<td>El equipo utiliza más del tiempo establecido para su exposición.</td>
</tr>
</tbody>
</table>

| TOTAL | | | | | | |
Las partículas subatómicas: ¿alguna relación con nuestra vida cotidiana?

- Describe a las partículas subatómicas por su símbolo, carga y ubicación en el átomo.
- Relaciona el número atómico y número de masa con el número de partículas subatómicas presentes en un átomo determinado, que le permitan comprender las interacciones que se presentan en algunos fenómenos de la vida cotidiana.

1. Problematización

Actividad 3.9

Contesta las siguientes preguntas exploratorias.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>El número de electrones determina el número atómico de un átomo.</td>
<td>F</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>El protón es una partícula subatómica que se encuentra en el interior del núcleo atómico.</td>
<td>F</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>A Joseph John Thomson se le considera el descubridor del electrón.</td>
<td>F</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>El número atómico fue propuesto por Henry Moseley.</td>
<td>F</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>El neutrón es una partícula subatómica que se encuentra girando alrededor del núcleo atómico.</td>
<td>F</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>La existencia del neutrón se había sugerido mucho antes de 1932, pero fue identificado hasta ese año por el físico inglés James Sandwich.</td>
<td>F</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Los protones y neutrones son partículas constituidas por quarks.</td>
<td>F</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>El número de masa representa la suma de protones y neutrones.</td>
<td>F</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>El protón es una partícula subatómica que se encuentra en el interior del núcleo atómico.</td>
<td>F</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Los átomos de un mismo elemento pueden tener masas diferentes.</td>
<td>F</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>El electrón es una partícula subatómica que contribuye en forma considerable a la masa del átomo y es responsable de la existencia de los isótopos.</td>
<td>F</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Los átomos de un mismo elemento pueden tener masas diferentes.</td>
<td>F</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Adquisición y organización de la información

Actividad 3.10

En forma individual lee acerca de las partículas subatómicas y realiza una breve síntesis de la misma.

Una vez que el protón y el electrón fueron descubiertos y que pudo determinarse la masa atómica del átomo de hidrógeno: 1 umá, se encontró que ésta era igual a la masa correspondiente al número de protones que poseía. Sin embargo, al medir la masa atómica de otros átomos con mayor número atómico (y por tanto, mayor número de protones), por ejemplo, el helio, cuyo número de protones es 2; los científicos encontraron que su masa total es igual a 4 umá. Esto hizo suponer que dentro del núcleo existían otras partículas, además de los protones, que afectaban el valor de la masa total del átomo. Este hecho fue demostrado y comprobado años más tarde. En 1932, el físico inglés James Chadwick, descubrió con sus experimentos la presencia de una tercera partícula subatómica que no poseía carga y cuya masa era semejante a la del protón, a esta partícula por sus características se le denominó neutrón.

Número atómico, número de neutrones y número de masa

El número atómico fue propuesto por Henry Moseley en 1913, y determina el número de protones presentes en el núcleo de un átomo. Nos indica también, el número de orden o posición de un elemento en la tabla periódica. De manera convencional el número atómico se suele representar por la letra “Z”.

Actividad 3.11

Indaga en diversas fuentes el origen del símbolo Z, para el número atómico.

__

Los átomos que tienen el mismo valor de Z pertenecen al mismo elemento. El hidrógeno es el elemento más ligero y su valor de Z es igual a 1. Existen elementos con Z, menor o igual a 118; 92 de ellos son naturales, mientras que el resto han sido creados artificialmente. De manera convencional el número atómico se escribe en la parte inferior izquierda del símbolo químico del elemento, por ejemplo:

\[
\begin{align*}
\text{H} & \quad \text{Na} & \quad \text{Ca} \\
1 & 11 & 20 \\
\end{align*}
\]

\[
\text{No. atómico (Z)} = \text{No. de protones} = \text{No. de electrones}
\]

\[
Z = p^+ = e^-
\]
¿Qué tan elementales son las partículas subatómicas?

Una **partícula elemental** es aquella que no está formada por otras partículas y que por lo tanto, no se puede dividir. En la década de los años 60, los físicos se dieron cuenta que la idea de que la materia estaba constituida sólo por partículas elementales como el protón, neutrón y electrón, era insuficiente para explicar la nuevas partículas que se estaban descubriendo.

La teoría de los **quarks**, de Murray Gell-Mann y Zweig solucionó estos problemas. Esta teoría que hoy se conoce como el Modelo Standard de las Partículas e Interacciones, ha ganado aceptación, a partir de las nuevas evidencias proporcionadas por los aceleradores de partículas.

La palabra **quark** fue originalmente utilizada por James Joyce en su novela «Finnegans Wake», de la cual Murray la toma para designar a estas partículas elementales.

<table>
<thead>
<tr>
<th>Partículas del mundo material</th>
<th>Dentro del núcleo</th>
<th>Simbolo</th>
<th>Tipo de carga</th>
<th>Fuera del núcleo</th>
<th>Simbolo</th>
<th>Tipo de carga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arriba (up)</td>
<td></td>
<td>u</td>
<td>+2/3</td>
<td>Leptones</td>
<td>e</td>
<td>-1</td>
</tr>
<tr>
<td>Abajo (down)</td>
<td></td>
<td>d</td>
<td>-1/3</td>
<td>Neutrino del electrón</td>
<td>n_e</td>
<td>0</td>
</tr>
<tr>
<td>Extraño (strange)</td>
<td></td>
<td>s</td>
<td>-1/3</td>
<td>Muén</td>
<td>m</td>
<td>-1</td>
</tr>
<tr>
<td>Encanto (charm)</td>
<td></td>
<td>c</td>
<td>+2/3</td>
<td>Neutrino del muén</td>
<td>n_m</td>
<td>0</td>
</tr>
<tr>
<td>Fondo (Bottom)</td>
<td></td>
<td>b</td>
<td>-1/3</td>
<td>Tau</td>
<td>t</td>
<td>-1</td>
</tr>
<tr>
<td>Cima (top)</td>
<td></td>
<td>t</td>
<td>+2/3</td>
<td>Neutrino del tau</td>
<td>n_t</td>
<td>0</td>
</tr>
</tbody>
</table>

Hay seis tipos de quarks: up(arriba), down (abajo), strange (extraño), charm (encanto), bottom (fondo) y top (cima). La carga eléctrica del quark es fraccionaria de -1/3 o +2/3. De acuerdo a la teoría de Murray-Gellman los quarks poseen carga de color (que nada tiene que ver con el color que percibe el ojo humano). Existen tres tipos de carga de color: roja, azul y verde.

Los electrones y los quarks forman prácticamente toda la materia de la que estamos rodeados. Los quarks up y down forman los protones y neutrones, que a su vez forman los núcleos atómicos. El protón está formado por tres quarks: 2 up y 1 down. La suma de las tres cargas es +1: 2 (2/3) -1/3= +1.

El neutrón también está formado por tres quarks: 2 down y 1 up. La suma de sus tres cargas es cero: 2(-1/3) + 2/3=0.
Númerode masa

El número de masa es un número entero que corresponde a la suma de protones y neutrones y convencionalmente se representa con la letra \(A \). Se escribe generalmente en la parte superior izquierda del símbolo químico del elemento.

\[
\text{No. de masa (A)} = \text{No. de protones (p\(^+\))} + \text{No. de neutrones (n\(0\))}
\]

\[
A = p^+ + n^0
\]

Como la masa atómica de un elemento es siempre un número fraccionario, su número de masa será, el número entero más próximo a su masa atómica. Por ejemplo: Si el hierro (Fe) tiene una masa atómica de 55.85, su número de masa debe ser 56. ¿Cuál será el número de masa para el cinc (Zn), si éste tiene una masa atómica de 65.38? __________

Actividad 3.12

Indaga en diversas fuentes de donde proviene el símbolo \(A \), para el número de masa.

¿Sabías que...

la masa de un átomo de un elemento determinado, es una masa promedio de los isótopos de ese elemento? Ésta se obtiene multiplicando la masa atómica exacta de cada isótopo por el decimal de su porcentaje de abundancia en la naturaleza y considerando la suma promedio de los valores obtenidos.

Por ejemplo, la masa atómica del carbono es 12.01 y se obtiene a partir de los porcentajes de cada isótopo: C-12, con el 98.893% y masa 12 y C-13, con el 1.107% y masa 13.003:

\[
A = \frac{98.893 \times 12 + 1.107 \times 13.003}{100} = 12.01 \text{ uma}
\]

Núcleidos

Un núcleo es la representación de los nucleones (protones y neutrones) de un átomo, utilizando para ello, el símbolo químico de éste (el cual se representa con la letra “\(X \)”), el número atómico (\(Z \)); el número de masa (\(A \), de la forma siguiente:

Utilizando los valores de \(A \) y \(Z \) del átomo de cloro, se puede obtener el número de electrones y neutrones que posee.

\[
\begin{align*}
\text{A} &= 35 \\
\text{Z} &= 17 \\
\text{Cl} &= 35 \\
6
\end{align*}
\]

\[
\text{No. de protones} = 17 \\
\text{No. de electrones} = 17 \\
\text{No. de masa} = 35 \\
\text{No. de neutrones} = 35 - 17 = 18
\]
3. Procesamiento de la información

Actividad 3.13

En forma colaborativa resuelve las siguientes situaciones.

1. Completa la siguiente tabla con las características de cada partícula subatómica.

<table>
<thead>
<tr>
<th>Partícula</th>
<th>Símbolo</th>
<th>Descubridor</th>
<th>Lugar en el átomo</th>
<th>Carga eléctrica</th>
<th>Carga eléctrica relativa</th>
<th>Masa de la partícula</th>
<th>Masa relativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrón</td>
<td>e⁻</td>
<td>J.J. Thompson</td>
<td>Fuera</td>
<td>-1.6 x 10⁻¹⁹C</td>
<td>-1</td>
<td>9.11 x 10⁻³¹kg</td>
<td></td>
</tr>
<tr>
<td>Protón</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 una</td>
</tr>
<tr>
<td>Neutrón</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Completa la siguiente tabla utilizando los datos que se proporcionan para cada átomo.

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Símbolo</th>
<th>Z</th>
<th>A</th>
<th>p⁺</th>
<th>n⁰</th>
<th>e⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fósforo</td>
<td>15</td>
<td>31</td>
<td></td>
<td>18</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Cloro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hierro</td>
<td>56</td>
<td>26</td>
<td></td>
<td>79</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Oro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plomo</td>
<td>82</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plata</td>
<td></td>
<td>47</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potasio</td>
<td>19</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesio</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

3. Los siguientes núclidos son isótopos.

¿Qué semejanzas y diferencias encuentras entre ellos?

<table>
<thead>
<tr>
<th>Semejanzas</th>
<th>Diferencias</th>
</tr>
</thead>
</table>
¿Podemos ver a los átomos?

El ojo humano no es capaz de visualizar a un átomo, porque son demasiados pequeños. Pero sí puede ver un conjunto de cuatrillones de átomos.

Esto representa la cienmilésima parte del diámetro de un átomo.

En 1970, Albert Crewe de la Universidad de Chicago anunció que había obtenido con el microscopio electrónico las primeras imágenes fotográficas de átomos individuales de uranio y thorio. Para mediados de los 80, ya se obtenían imágenes de átomos de la superficie de ciertos materiales mediante el microscopio de barrido de efecto túnel (STM, por sus siglas en inglés: Scanning Tunneling Microscope).

¿Cómo se pueden captar las imágenes de los átomos con un microscopio de barrido de efecto túnel?

El instrumento detecta y delinea por medio de una sonda las «protuberancias» que los átomos forman en la superficie de los materiales, en la forma siguiente:

1. Una punta va haciendo el barrido de la superficie a una distancia de unos cuantos diámetros atómicos. El barrido se hace punto por punto y línea por línea. En cada punto se mide el efecto túnel entre la punta de barrido y la superficie. El efecto túnel disminuye exponencialmente al aumentar la distancia. La punta de barrido se ajusta de acuerdo a estas variaciones (A).

2. La cantidad de ajustes se registra y se puede desplegar como una imagen en escala de grises (B).
3. En lugar de asignar los valores a un color se puede hacer una representación en tres dimensiones (C).

4. Y se puede regresar otra vez a la escala de grises (D)

![Imagen (C)](image-c)

(D)

5. Se pinta de gris la superficie completa de manera uniforme, y se ajusta la luz y el sombreado para dar apariencia tridimensional (E).

6. Se pueden usar diferentes luces, a diferentes posiciones, con diferentes colores (F).

7. En vez de usar sólo el gris, se puede utilizar una paleta de color y pintarla de acuerdo a la altura (G).

8. También se puede escoger el color de acuerdo a otra propiedad de la superficie, por ejemplo, la curvatura (H).

![Imagenes (E), (F), (G), (H)](images-efgh)

Con esta información te puedes dar una idea de cómo se pueden captar las imágenes de los átomos, al usar el microscopio de barrido de efecto túnel que con ayuda de las computadoras y los programas de software, se logra obtener una imagen. Sin embargo, las imágenes obtenidas no son iguales a las que imaginamos en el mundo macroscópico.

Veamos algunas imágenes captadas con este instrumento:

[Átomos de platino](image-atom-platino)
[Átomos de níquel con un átomo de xenón](image-atom-nick-xen)
[Moléculas de monóxido de carbono sobre superficie de platino](image-atom-mono-carbono)
[Átomos de hierro sobre superficie de cobre](image-atom-iron-copper)
[Átomos de xenón sobre superficie de níquel](image-atom-xen-nick)

Tomado de IBM Almaden Research Center Visualization Lab.
4. Aplicación de la información

Actividad 3.14

En forma individual o colaborativa resuelve los siguientes cuestionamientos.

1. Explique por qué el número atómico nos permite deducir el número de electrones presentes en un átomo.

__
__
__

2. ¿Por qué todos los átomos de un mismo elemento tienen el mismo número atómico, a pesar de que pueden tener diferente número de masa?

__
__
__

3. ¿Cómo se denominan los átomos del mismo elemento que tienen diferente número de masa?

__

4. ¿Cuál es el número de masa de un átomo de cobalto que tiene 30 neutrones?

__

5. Completa la siguiente tabla determinando para cada especie, el número de protones, neutrones, electrones, número de masa y número atómico.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protones</th>
<th>Neutrones</th>
<th>Electrones</th>
<th>No de masa</th>
<th>No. atómico</th>
</tr>
</thead>
<tbody>
<tr>
<td>102 Rh</td>
<td>207 Pb</td>
<td>240 U</td>
<td>31 P</td>
<td>32 S²⁻</td>
</tr>
</tbody>
</table>

6. Los nuevos descubrimientos en Física, permiten concluir que tanto el protón como el neutrón no son partículas elementales, ante esto, ¿qué plantean Murray Gell-Mann y Zweig?
7. En términos generales el radio de un átomo es aproximadamente 10,000 veces mayor que su núcleo. Si un átomo pudiera amplificarse de manera que el radio de su núcleo midiera 2 cm, casi el tamaño de una canica, ¿cuál sería el radio del átomo en metros?

__
__
__
__

8. ¿Qué partícula subatómica tiene bastante utilidad en nuestra vida diaria, y en qué fenómenos se manifiesta su presencia? Reflexiona sobre la importancia de la misma.

__
__
__
__
__
__
__
__
__
__
__
__
__
5. Autoevaluación

Actividad 3.15

Responde de nuevo a las preguntas iniciales de falso-verdadero y fundamenta tu respuesta.

<table>
<thead>
<tr>
<th>Pregunta</th>
<th>Fundamentación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. El número de electrones determina el número atómico de un átomo.</td>
<td></td>
</tr>
<tr>
<td>2. El protón es una partícula subatómica que se encuentra en el interior del núcleo atómico.</td>
<td></td>
</tr>
<tr>
<td>3. El neutrón es una partícula subatómica que se encuentra girando alrededor del núcleo atómico.</td>
<td></td>
</tr>
<tr>
<td>4. Los protones y neutrones son partículas constituidas por quarks.</td>
<td></td>
</tr>
<tr>
<td>5. El número de masa representa la suma de protones y neutrones.</td>
<td></td>
</tr>
<tr>
<td>6. Los átomos de un mismo elemento pueden tener masas diferentes.</td>
<td></td>
</tr>
<tr>
<td>7. El electrón es una partícula subatómica que contribuye en forma considerable a la masa del atomo y es responsable de la existencia de los isótopos.</td>
<td></td>
</tr>
<tr>
<td>8. La existencia del neutrón se había sugerido mucho antes de 1932, pero fue identificado hasta ese año por el físico inglés James Sandwich.</td>
<td></td>
</tr>
<tr>
<td>9. El protón y el neutrón son partículas que constituyen el núcleo atómico, por eso se denominan nucleones.</td>
<td></td>
</tr>
<tr>
<td>10. El núcleo atómico fue descubierto por Niels Bohr.</td>
<td></td>
</tr>
</tbody>
</table>
Autoevaluación

Utiliza la lista de cotejo para evaluar tu nivel de desempeño, en los diferentes momentos de la realización de la secuencia didáctica: Las partículas subatómicas.

<table>
<thead>
<tr>
<th>Criterios</th>
<th>Indicadores</th>
<th>Si</th>
<th>No</th>
<th>Puntos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problematización</td>
<td>Explora sus conocimientos previos al resolver la actividad 3.9.</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Adquisición y organización de la información</td>
<td>Indaga en diversas fuentes el origen de los símbolos Z (Actividad 3.11) y A (Actividad 3.12).</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Da lectura al texto denominado «¿Qué tan elementales son las partículas subatómicas? y elabora una síntesis.</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Procesamiento de la información</td>
<td>Da respuesta a las preguntas de la actividad 3.13.</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Aplicación</td>
<td>Da respuesta a las preguntas de la actividad 3.14.</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Autoevaluación</td>
<td>Analiza y fundamenta cada una de las aseveraciones de la actividad 3.15.</td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>Actitudes y valores</td>
<td>Se integra de manera eficiente al trabajo colaborativo.</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Participa con respeto y tolerancia en el equipo.</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Participa con responsabilidad en el cumplimiento de las actividades.</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Los isótopos: ¿qué beneficios y riesgos encuentras en su aplicación en los diferentes ámbitos de la vida?

- Define isótopo estableciendo diferencias y semejanzas entre dos núclidos de un mismo elemento.
- Interpreta lo que sucede en una reacción nuclear a partir de las partículas o radiaciones que se emiten.
- Reflexiona acerca de los beneficios y riesgos que trae consigo el uso de isótopos radioactivos, en la producción de energía, en la salud y en la naturaleza.

1. Problematización

¿Qué beneficios y riesgos encuentras en la aplicación de los isótopos en los diferentes ámbitos de la vida?

[Blank lines for students to write answers]

Actividad 3.16

Explora tus conocimientos previos, dando respuesta a las siguientes aseveraciones como falsas o verdaderas.

1. Los átomos de un mismo elemento tienen masas diferentes porque tienen diferente número de protones.
 - F V

2. El uranio-235 es el isótopo más ampliamente utilizado en los reactores nucleares.
 - F V

3. La radiación nuclear se utiliza en el campo de la medicina como auxiliar en el diagnóstico y tratamiento de ciertas enfermedades.
 - F V

4. El yodo-131 se utiliza en el diagnóstico y tratamiento de trastornos de la tiroides.
 - F V

5. Todos los isótopos son radioactivos.
 - F V

6. Existen isótopos estables e inestables.
 - F V

7. Todo isótopo radiactivo es inestable y emite radiación espontánea desde su núcleo.
 - F V

8. La emisión de partículas alfa (α) provoca una disminución de dos unidades en el número atómico y de cuatro unidades en el número de masa.
 - F V

9. En una emisión tipo beta un neutrón se convierte en un protón y un electrón.
 - F V

10. El carbono-14 se utiliza para determinar la edad de los fósiles.
 - F V

11. La radiactividad no afecta a la salud de las personas y los animales.
 - F V
2. Adquisición y organización de la información

Actividad 3.17

En forma individual realiza la lectura acerca de los isótopos y elabora una síntesis de la misma.

Los isótopos son átomos del mismo elemento que tienen el mismo número atómico pero diferente número de masa. Los isótopos de un mismo elemento tienen las mismas propiedades químicas, pero son ligeramente diferentes en sus propiedades físicas, por ejemplo, los monóxidos de carbono-12 y carbono-13 reaccionan con el oxígeno para formar los dióxidos respectivos (propiedad química). Sin embargo, el monóxido formado por el C-12 tiene un punto de fusión de –199 °C, mientras que el formado por C-13 tiene un punto de fusión de –207 °C (propiedad física).

La existencia de los isótopos es un fenómeno común, ya que la mayoría de los elementos existen como una mezcla de ellos. El hidrógeno tiene 3 isótopos: el protio, deuterio y tritio.

Un núcleo se considera estable si no se transforma en otros núcleos bajo ciertas condiciones. El berilio tiene un único isótopo estable. Casi todos los elementos tienen más de un isótopo estable, siendo el estano (Sn) el que mayor número de ellos posee (10).

Los núcleos atómicos de una sustancia radiactiva no son estables y siempre se transforman espontáneamente en otros núcleos. Al proceso de emisión de energía o de partículas emitidas por un núcleo recibe el nombre de desintegración radiactiva o simplemente radiactividad. A las partículas o rayos emitidos se les da el nombre de radiación. Existen tres tipos de emisión, alfa, beta y gamma. Los isótopos que sufren desintegración radiactiva se llaman radionúclidos o radioisótopos.

Emisión alfa

La emisión de partículas alfa (α) provoca una disminución de dos unidades en el número atómico y de cuatro unidades en el número de masa. Ejemplo:

\[^{226}_{88} \text{Ra} \rightarrow ^{222}_{86} \text{Rn} + ^{4}_{2} \alpha \]
Emisión beta

La emisión de partículas beta (β) provoca un aumento en el número atómico, mientras que el número de masa permanece igual. Esto se debe a que un neutrón se convierte en un protón y un electrón.

\[
\begin{array}{c}
\text{Un}^0 \text{n} \rightarrow \text{E}^{-1}_0 + \text{P}^1 + 1 \text{n} \\
\text{U}^{239}_{92} \rightarrow \text{E}^{-1}_0 + \text{Np}^{239}_{93}
\end{array}
\]

Emisión gamma

La emisión gamma (γ) es un tipo de radiación electromagnética producida generalmente por el Sol y por la desintegración de elementos radiactivos. Los seres humanos debemos cuidarnos de la exposición a la radiactividad, pues debido a su alta energía puede penetrar la piel y los huesos, causando daño a las células. Para beneplácito de todos, la radiación gamma producida en el espacio es absorbida en la alta atmósfera.

Las centrales nucleoléctricas

Las reacciones de fisión nuclear van acompañadas de la liberación de enormes cantidades de energía. En las centrales nucleoléctricas esta energía se utiliza para generar energía eléctrica. Según datos del Foro de la Industria nuclear, existen 438 centrales nucleares que producen el 17 % de la electricidad mundial. En nuestro país se encuentran funcionando dos reactores nucleares en la Central nucleoléctrica «Laguna Verde» en Veracruz, uno desde 1989 y el otro en 1995. A nivel mundial ante la escasez de combustibles fósiles, una de las alternativas para generar energía eléctrica fue la fisión nuclear. ¿Por qué seguirle apostando a este tipo de energía, si también procede de una fuente no renovable? Ahora bien, a pesar de los intentos por construir reactores nucleares cada vez más seguros, han ocurrido accidentes tanto en Estados Unidos (1979), Rusia (1986) y recientemente en Japón (2011), que obligan a la reflexión.

Conozca más ...

‘Fukushima ya es como Chernóbil’

TOKIO (UNIV). Una posible fractura en el reactor 3 de la planta nuclear de Fukushima agravó nuevamente ayer la crisis, dos semanas después del terremoto y tsunami que afectaron el noreste del País, que ha dejado hasta ahora más de 10 mil muertos y 17 mil 500 desapareci- dos.

Los indicios sugieren que la contaminación radiactiva podría ser peor de lo que se pensaba en un principio; una contaminación en los mantos acuíferos subterráneos sería la consecuencia más probable.
La Agencia de Seguridad Nuclear de Japón informó ayer, sábado, que se ha detectado una concentración de yodo radiactivo mil 250 veces superior al límite legal en aguas marinas cercanas a la planta nuclear de Fukushima.

Pese a que se trabajan las 24 horas para impedir un accidente nuclear mayúsculo, el gobierno de Japón no consigue controlar la situación en la planta, donde la presencia de agua radiactiva frenó en las últimas horas los esfuerzos.

Según un informe difundido el viernes por Greenpeace en Alemania, el accidente de Fukushima ya liberó una cantidad tal de radiactividad que debería ser clasificado como nivel 7 en la Escala Internacional de Sucesos Nucleares, el mismo de Chernóbil.

La Agencia Internacional de Energía Atómica, con sede en Viena, consideró que hacen falta muchos preparativos antes de que los ingenieros puedan investigar y, eventualmente, sellar las fugas. Se presume que se está fugando radiactividad de los contenedores de los reactores 1, 2 y 3.

El número de muertos y desaparecidos por el terremoto y tsunami del pasado día 11 se elevó a 27 mil 490, informó la policía. Un total de 10 mil 418 decesos y 17 mil 500 desaparecidos.

El Primer Ministro japonés, Naoto Kan, nombró este sábado al ex ministro de Transportes Sumio Mabuchi su asesor especial para la gestión de la crisis en la planta nuclear de Fukushima. En rueda de prensa, el también vocero del Gobierno informó del nombramiento de Mabuchi, que buscará reforzar la gestión de las operaciones para controlar la central de Fukushima.

ONU pide mayor seguridad

Resaltando la creciente preocupación internacional sobre la energía nuclear generada por el accidente en el noreste de Japón, el Secretario general de Naciones Unidas, Ban Ki-moon, dijo que era momento de garantizar un régimen de seguridad atómica mundial. El miedo a la contaminación radiactiva se extendió tras hallarse verduras y agua contaminados en áreas cercanas a la central y en Tokio. Las autoridades hallaron cesio radiactivo por encima de los límites permitidos en una verdura llamada komatsuna que fue cultivada en Edogawa, en Tokio.

Una madre sale con su hijo a buscar provisiones debido a que el control de alimento es crítico por la radiactividad encontrada.

¿Qué es la lluvia radiactiva?

Se denomina lluvia radiactiva a la acumulación de partículas radiactivas transportadas por el aire que se depositan en la tierra durante y después de un bombardeo atómico, de una prueba de armas nucleares o de un accidente en una planta nuclear. El material radiactivo es transportado por diminutas gotas de agua presentes en la atmósfera. Así, puede ser inhalado directamente e ingresar a los pulmones, o llegar al mar y al suelo a través de la lluvia, por lo que puede contaminar los cultivos, la fauna marina y el agua para beber. La leche de vaca también es especialmente vulnerable, según los expertos, si el ganado pasta en zonas expuestas a la radiación.

Tras el tsunami del 11 de marzo de 2011 en Japón que causó daños en varias plantas nucleares del país, la Agencia de Protección del Medio Ambiente de Estados Unidos ha detectado niveles anormales de yodo radiactivo en el agua de lluvia del estado de Massachusetts (noreste), procedente de la central japonesa de Fukushima-1. De momento, las autoridades han descartado que estas trazas de radiactividad puedan causar riesgo alguno para la salud humana, ya que la presencia de este yodo en dichas muestras es muy baja.

Actividad 3.18

Indaga en diversas fuentes, en qué consiste la fisión nuclear.

__
__
__
__

Actividad 3.19

Indaga en diversas fuentes, ¿por qué, ante una emergencia nuclear, las personas que viven cerca de una central nucleoeléctrica deben ingerir tabletas de yoduro de potasio? y ¿cuál es el significado de la unidad \(\text{rad} \)?

__
__
__
__
Los isótopos y sus implicaciones en la vida diaria

El radón

Una costumbre mexicana, consiste en ventilar todos los días las habitaciones de la casa, costumbre que ayuda a eliminar el radón que pudiera quedar acumulado en los cuartos, cuando se filtra a través del piso. El radón es un gas contaminante sumamente peligroso para la salud, que proviene de la desintegración radiactiva del uranio-238. El radón en sí, no es peligroso para la salud humana, sino su producto de desintegración, el polonio-218, que puede provocar daños graves en el tejido pulmonar.

El yodo-131

En la sierra sinaloense hasta hace algunos años era muy común la enfermedad del bocio entre sus habitantes, situación provocada por la deficiencia de yodo en sus alimentos, al consumir sal sin yodatar utilizada frecuentemente para el ganado y la elaboración de quesos. El término «buchón» se utilizó de manera «peyorativa» en Sinaloa, para denotar la presencia de esta enfermedad, aunque posteriormente cambió su propia connotación para referirse a sujetos que se dedican al narcotráfico.

La glándula tiroides necesita cantidades pequeñas de yodo para producir las hormonas: T4 (tiroxina) y la T3, triyodotironina, que ayudan a regular la velocidad del metabolismo. La deficiencia de yodo provoca que la glándula se agrande (hipertiroidismo) para aumentar su capacidad de extraer y procesar el yodo en alimentos.

El tratamiento de esta enfermedad puede ser la cirugía, los fármacos y el yodo radiactivo. El yodo-131 es un isótopo radiactivo muy específico, que actúa destruyendo sólo el tejido tiroideo, de modo tal, que provoca la disminución de la actividad de la tiroides, éste se administra por vía oral en disolución acuosa o pastillas, el paciente se recupera entre 8 y 12 semanas.

El carbono-14

El carbono está constituido principalmente por dos isótopos: carbono-12 y carbono-13, los cuales tienen abundancias de 98.9% y 1.1% respectivamente. Existen trazas de un tercer isótopo, el carbono-14. El carbono-14, se forma en la parte alta de la atmósfera por reacciones nucleares entre el nitrógeno y los neutrones de las radiaciones cósmicas.
El carbono-14 una vez formado se combina con el oxígeno para formar bióxido de carbono (14CO$_2$), el cual entra al ciclo del carbono y circula por la atmósfera y la biosfera.

La utilidad del carbono-14 para el datado de objetos, se debe a lo siguiente: Las plantas o los animales incorporan el 14CO$_2$, el cuál permanecerá constante mientras se encuentren vivos. Sin embargo, empezará a disminuir cuando mueran, debido a que dejan de captar carbono-14. Tomando en cuenta la disminución de la actividad del carbono-14 presente en el objeto a datar y knowociendo el tiempo de vida media del carbono-14 se puede calcular aproximadamente la edad de un objeto. Esta técnica tiene su margen de error, no puede ser utilizada para datar un objeto que tenga menos de 100 o más de 40 000 años.

El carbono-14 emite partículas beta (β) y tiene una vida media de 5730 años.

Conozca más ...

Los isótopos en la medicina

Todos estamos expuestos a pequeñas cantidades de radiación, esto es inevitable. La Tierra es bombardeada de manera constante por partículas radiactivas provenientes del espacio exterior. También existe un cierto grado de exposición a elementos radiactivos de manera natural en la Tierra, incluyendo 14C, 40K, 238U, 232Th. Sin embargo, las personas expuestas a rayos X, radioterapias o quimioterapias es mucho mayor en ellos el daño.

Los daños biológicos ocasionados por estas radiaciones se cuantifican por la unidad llamada **rem** (abreviatura de roentgen equivalent man) «equivalente roentgen en humanos»

Efectos de una dosis única de radiación

<table>
<thead>
<tr>
<th>Dosis rem</th>
<th>Efecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-25</td>
<td>No se observa efecto</td>
</tr>
<tr>
<td>26-50</td>
<td>Pequeña disminución en Leucocitos</td>
</tr>
<tr>
<td>51-100</td>
<td>Disminución significativa de Leucocitos</td>
</tr>
<tr>
<td>101-200</td>
<td>Caída del cabello, náusea</td>
</tr>
<tr>
<td>200-500</td>
<td>Hemorragia, úlceras, muerte en el 50% de la población</td>
</tr>
<tr>
<td>>500</td>
<td>Muerte</td>
</tr>
</tbody>
</table>

En la radioterapia se usa con frecuencia una fuente de cobalto-60, que emite y concentra rayos beta sobre el área afectada por el cáncer.

Desafortunadamente al aplicar radiación en el tratamiento de la mayoría de los cánceres se daña tejido sano durante el proceso, no obstante, se sigue utilizando por su efectividad. En cuanto a la radiación, la preocupación principal se presenta con las mujeres embarazadas o lactantes, ya que los bebés y los fetos son más sensibles a los efectos de la radiación, debido a que sus órganos aún están en desarrollo.
La quimioterapia es un término que suele utilizarse para indicar el uso de fármacos en el tratamiento de células cancerosas. Estos fármacos tienen la propiedad de interferir en el ciclo celular ocasionando la destrucción de células.

Los efectos secundarios tanto en la radioterapia como en la quimioterapia suelen ser: daño a células y tejidos sanos, caída del pelo, náuseas, enrojecimiento, resequedad, comezón y sensibilidad de la piel del área tratada, posibilidad de daño celular y mutaciones hereditarias en óvulos y espermatozoides.

Los isótopos se han utilizado ampliamente en medicina para el diagnóstico y tratamiento de enfermedades. Son utilizados para obtener imágenes específicas del cuerpo humano, la elección del radioisótopo y la manera de administrarlo depende del tejido y la facilidad para ser absorbido por el tejido enfermo. Los beneficios de llevar a cabo un estudio con isótopos para diagnosticar una enfermedad superan cualquier preocupación por los posibles efectos secundarios.

En el siguiente cuadro se muestran algunos isótopos utilizados para diagnóstico médico.

<table>
<thead>
<tr>
<th>Isótopo</th>
<th>Imágenes</th>
</tr>
</thead>
<tbody>
<tr>
<td>99Tc</td>
<td>Tiroides, cerebro, riñones</td>
</tr>
<tr>
<td>201Tl</td>
<td>Corazón</td>
</tr>
<tr>
<td>123I</td>
<td>Tiroides</td>
</tr>
<tr>
<td>67Ga</td>
<td>Diversos tumores y abscesos</td>
</tr>
<tr>
<td>18F</td>
<td>Cerebro, órganos con actividad metabólica</td>
</tr>
</tbody>
</table>
3. Procesamiento de la información

Actividad 3.20

En forma colaborativa completa las siguientes ecuaciones que muestran la desintegración de algunos núclidos indicando el tipo de emisión alfa o beta.

a) En esta reacción nuclear el Thorio-230 se transforma en Radio-226, indica el tipo de emisión.

\[^{230}_{90}\text{Th} \rightarrow ^{226}_{88}\text{Ra} + \underline{\text{______}} \]

b) En esta reacción nuclear el Thorio-234 se transforma en Protactinio-234, indica el tipo de emisión.

\[^{234}_{90}\text{Th} \rightarrow ^{234}_{91}\text{Pa} + \underline{\text{______}} \]

c) Completa la siguiente reacción nuclear e indica el tipo de emisión:

\[^{208}_{82}\text{Pb} \rightarrow ^{208}_{83}\text{Bi} + \underline{\text{______}} \]

d) En cierta ciudad se construyó un fraccionamiento, el cual fue habitado por diversas familias. En una de las residencias se presentó un extraño caso, a los meses de ser habitada los integrantes de la misma, enfermaron y murieron. Las investigaciones arrojaron los siguientes datos, ninguno consumió sustancias tóxicas, la casa habitación se mantenía siempre cerrada de puertas y ventanas. ¿Qué pudo haber ocasionado la muerte de estas personas? Escribe algunas hipótesis que ayuden a esclarecer este hecho.

__
__
__
__
__
__
__
__
4. Aplicación de la información

Actividad 3.21

En forma individual o colaborativa resuelva los siguientes cuestionamientos.

a) La siguiente imagen muestra un mapa del movimiento o dispersión de las partículas radiactivas desde Japón hasta el Continente americano. Reflexiona sobre la posibilidad de que estas partículas puedan llegar a suelo mexicano y sobre qué medidas se habría de adoptar en caso de que la población se encuentre expuesta a dicha radiación.

b) Valora el siguiente escenario mundial: «Los combustibles fósiles se han agotado a nivel mundial y los gobiernos de los diferentes países acordaron cerrar todas las plantas nucleoeléctricas» ¿Qué fuentes de energía alternativa pueden ser utilizadas sin que impacten demasiado en el deterioro del ambiente?
5. Autoevaluación

Actividad 3.22

Analiza cada una de las preguntas iniciales de falso-verdadero y fundamenta tu respuesta.

<table>
<thead>
<tr>
<th>Pregunta</th>
<th>Fundamentación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Los átomos de un mismo elemento tienen masas diferentes porque tienen diferente número de protones.</td>
<td></td>
</tr>
<tr>
<td>2. El uranio-235 es el isótopo más ampliamen-te utilizado en los reactores nucleares.</td>
<td></td>
</tr>
<tr>
<td>3. La radiación nuclear se utiliza en el campo de la medicina como auxiliar en el diagnóstico y tratamiento de ciertas enfermedades.</td>
<td></td>
</tr>
<tr>
<td>4. El yodo-131 se utiliza en el diagnóstico y tratamiento de trastornos de la tiroides.</td>
<td></td>
</tr>
<tr>
<td>5. Todos los isótopos son radioactivos.</td>
<td></td>
</tr>
<tr>
<td>6. Existen isótopos estables e inestables.</td>
<td></td>
</tr>
<tr>
<td>7. Todo isótopo radiactivo es inestable y emite radiación espontánea desde su núcleo.</td>
<td></td>
</tr>
<tr>
<td>8. La emisión de partículas alfa (α) provoca una disminución de dos unidades en el número atómico y de cuatro unidades en el número de masa.</td>
<td></td>
</tr>
<tr>
<td>9. En una emisión tipo beta un neutrón se convierte en un protón y un electrón.</td>
<td></td>
</tr>
<tr>
<td>10. El carbono-14 se utiliza para determinar la edad de los fósiles.</td>
<td></td>
</tr>
<tr>
<td>11. La radiactividad no afecta a la salud de las personas y los animales.</td>
<td></td>
</tr>
</tbody>
</table>
El modelo atómico actual y su relación con la incertidumbre de hoy

- Describe el modelo atómico actual a partir de las teorías que le dieron origen, teniendo en cuenta la incertidumbre presente en dicho modelo.
- Utiliza los valores de los números cuánticos para determinar los niveles y subniveles de energía, así como los orbitales atómicos en que se sitúan los electrones.
- Valora los aportes de Max Planck, Louis D’ Broglie, Werner Heisenberg, Paul Dirac, entre otros a la construcción del modelo actual.

1. Problematización

¿En qué difiere el modelo mecánico cuántico actual en relación al modelo de Bohr?

Actividad 3.23

Explora tus conocimientos previos, dando respuesta a las siguientes aseveraciones como falsas o verdaderas.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>El modelo mecánico cuántico considera al electrón de naturaleza dual, es decir, como onda y como partícula.</td>
</tr>
<tr>
<td>2.</td>
<td>El modelo mecánico cuántico utiliza el concepto de orbital.</td>
</tr>
<tr>
<td>3.</td>
<td>Órbita y orbital significan lo mismo.</td>
</tr>
<tr>
<td>4.</td>
<td>En el modelo de Bohr se considera que el electrón se mueve en órbitas definidas.</td>
</tr>
<tr>
<td>5.</td>
<td>La teoría cuántica considera que la energía se emite y absorbe en forma continua.</td>
</tr>
<tr>
<td>6.</td>
<td>Werner Heisenberg es un físico alemán que enunció el principio de incertidumbre.</td>
</tr>
<tr>
<td>7.</td>
<td>El modelo mecánico cuántico considera la imposibilidad de conocer la posición y la velocidad del electrón al mismo tiempo.</td>
</tr>
<tr>
<td>8.</td>
<td>La luz es de naturaleza ondulatoria y no puede ser considerada de naturaleza corpuscular.</td>
</tr>
<tr>
<td>9.</td>
<td>El efecto fotoeléctrico es un fenómeno que muestra la naturaleza corpuscular de la luz y pudo ser explicado por A. Einstein utilizando la teoría cuántica.</td>
</tr>
<tr>
<td>10.</td>
<td>El carbono-14 se utiliza para determinar la edad de los fósiles.</td>
</tr>
<tr>
<td>11.</td>
<td>Un orbital se define como la región del espacio atómico donde existe mayor probabilidad de encontrar a un electrón.</td>
</tr>
</tbody>
</table>
2. Adquisición y organización de la información

Actividad 3.24

En forma individual realiza la lectura acerca del modelo mecano cuántico y elabora una síntesis de la misma.

1. Teoría cuántica de Max Planck

En 1900, el físico alemán Max Planck, planteó una teoría para interpretar cómo los cuerpos absorben y emiten energía. Supuso que cuando se calienta un cuerpo, sus átomos vibran, dando lugar a radiaciones electromagnéticas y que éstas estaban cuantizadas, es decir que sólo se permiten ciertas vibraciones. En otras palabras Planck estaba planteando que la energía no se emite o absorbe de manera continua, sino que ésta al igual que la materia es de naturaleza discontinua. Para Planck, el valor de esta energía debía ser un múltiplo del «cuanto», del latín quantum, o pequeña cantidad, conocido también como «paquete de energía».

2. Teoría dualista de Louis De Broglie

En 1924, el físico francés Louis De Broglie, sugirió que la dualidad de la luz no es única. En sus estudios teóricos sobre la estructura atómica, concluyó que el dualismo puede ser un principio general. Fue capaz de demostrar que cualquier partícula material se podía tratar como si fuera de naturaleza ondulatoria. De Broglie comprobó experimentalmente que los electrones tenían un carácter dualístico: eran partículas-onda.

Fig. 3.27 Absorción y emisión de energía por el electrón.

Fig. 3.28 La naturaleza ondulatoria de los electrones fue demostrada experimentalmente en 1927, por C. J. Davisson y L. H. Germer. Los anillos de difracción que mostraban los electrones sólo podían ser explicados en función de su naturaleza ondulatoria.
3. Principio de incertidumbre de Heisenberg

Cuando un fotón de alta energía choca contra un electrón en movimiento de un átomo, la energía del electrón se altera. Este principio fue enunciado en 1926, por el físico alemán Werner Heisenberg:

Es imposible conocer simultáneamente, con exactitud perfecta, los dos factores importantes que gobiernan el movimiento de un electrón: su posición y su velocidad.

Si determinamos experimentalmente su posición exacta en cierto momento, su movimiento es perturbado en tal grado, por el mismo experimento que no será posible encontrarlo. Inversamente, al medir con exactitud la velocidad de un electrón, la imagen de su posición queda completamente borrosa.

El modelo atómico de Niels Bohr plantea que el electrón sólo gira en órbitas o niveles de energía bien definidos, por tanto, se puede determinar con precisión la posición del electrón con respecto al núcleo, lo cual entra en contradicción con el principio de incertidumbre.

El principio de incertidumbre plantea: no es posible determinar con exactitud perfecta y al mismo tiempo, la posición y la velocidad del electrón. Por tanto, se debe hablar de probabilidades.

Este principio fundamental básico de la teoría atómica moderna, muestra la inherente incertidumbre que hay en las mediciones de los sistemas atómicos.

4. Ecuación de onda de Erwin Schrödinger

A principios de 1926, el físico austriaco Erwin Schrödinger desarrolló una ecuación que toma en cuenta el comportamiento ondulatorio del electrón, así como el principio de incertidumbre, el cual sugiere la imposibilidad de conocer con exactitud la posición y el movimiento de un electrón y para ello, plantea la *probabilidad* de que el electrón se encuentre en cierta región del espacio en un instante dado.

En esta teoría, los electrones se describen por ciertas funciones matemáticas o *funciones de onda* (ψ).

Esta ecuación sitúa al electrón en un espacio tridimensional en el plano cartesiano, a esa región se le denomina orbital y se define como la zona o región del espacio atómico donde existe mayor probabilidad de localizar un electrón determinado. De esta forma el orbital se convierte en una nube difusa alrededor del núcleo.

En este nivel no preocupa el tratamiento matemático de la ecuación de onda, pero es importante conocer sus implicaciones para poder comprender el nuevo modelo atómico.

$$\frac{\hbar^2}{8\pi^2m} \left\{ \frac{\delta^2\psi}{\delta x^2} + \frac{\delta^2\psi}{\delta y^2} + \frac{\delta^2\psi}{\delta z^2} \right\} = E\psi$$
Números cuánticos

Los números cuánticos, son valores numéricos enteros que permiten identificar al electrón y situarlo dentro del átomo. Son cuatro los números cuánticos: \(n, l, m \) y \(s \).

El número cuántico principal: \(n = 1, 2, 3, 4... \)

El número cuántico principal \(n \), determina la energía del electrón, un aumento en \(n \) significa un aumento de energía. El valor de \(n \) es también una medida del tamaño del orbital. Puede tener cualquier valor entero desde 1 hasta el infinito. Este número cuántico sitúa al electrón en un determinado nivel de energía.

El número cuántico secundario: \(\ell = 0, 1, 2, 3, ..., n - 1 \)

El número cuántico secundario se relaciona con la forma del orbital y además permite situar al electrón en un determinado subnivel de energía.

Los valores de \(\ell \) (ele) dependen de \(n \) y pueden ser: \(\ell = 0, 1, 2, 3... \) hasta \(n-1 \). Cada valor de \(\ell \) corresponde a un tipo de subnivel y forma del orbital.

Tabla 3.2 Los valores de los números cuánticos \(n \) y \(l \) y su relación con los subniveles de energía.

<table>
<thead>
<tr>
<th>Valor de (n)</th>
<th>Valor de (l)</th>
<th>Tipo de subnivel</th>
<th>Número de orbitales</th>
<th>Número de electrones</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n=1)</td>
<td>(\ell = 0)</td>
<td>1s</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(n=2)</td>
<td>(\ell = 0)</td>
<td>2s</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(\ell = 1)</td>
<td>2p</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>(n=3)</td>
<td>(\ell = 0)</td>
<td>3s</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(\ell = 1)</td>
<td>3p</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>(\ell = 2)</td>
<td>3d</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>(n=4)</td>
<td>(\ell = 0)</td>
<td>4s</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(\ell = 1)</td>
<td>4p</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>(\ell = 2)</td>
<td>4d</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>(\ell = 3)</td>
<td>4f</td>
<td>7</td>
<td>14</td>
</tr>
</tbody>
</table>
Subniveles de energía y orbitales atómicos

Orbital 1s
Orbital 2s
Orbital 3s

Fig. 3.29 Orbitales atómicos s

Orbital 2px
Orbital 2py
Orbital 2pz

Fig. 3.30 Orbitales atómicos p

dxy (d₁)
dxz (d₂)
dyz (d₃)

Fig. 3.31 Orbitales atómicos d

dx²-y² (d₄)
dz² (d₅)
la estructura atómica y la periodicidad química: dos aspectos importantes

Fig. 3.32 Orbitales atómicos f

¿Sabías que...

los símbolos que se utilizan para los subniveles de energía, están relacionados con la terminología que se utilizó para clasificar las líneas espectrales, en los primeros estudios espectroscópicos de los elementos químicos? Estos grupos de líneas se denominaron:
- **scharp** (líneas nítidas pero de poca intensidad),
- **diffuse** (líneas difusas),
- **principal** (líneas intensas),
- **fundamental** (líneas frecuentes en muchos espectros). De estos nombres provienen las letras que ahora se aplican a los subniveles y orbitales.

El número cuántico magnético: $m = +\ell, 0, -\ell$

El número cuántico m se relaciona con la orientación de los orbitales dentro de un subnivel. Los orbitales de un mismo subnivel difieren por su orientación en el espacio y no por su energía.

Los valores de m dependen del valor de ℓ, los cuales pueden iniciar desde $+\ell$ hasta $-\ell$, incluyendo al cero.

El número de valores de m para un subnivel dado, especifica el número de orientaciones que pueden tener los orbitales de ese subnivel y por tanto el número de orbitales en ese subnivel.
Fig. 3.33 Diagrama de niveles energéticos que muestra la distribución de orbitales para cada subnivel.

El número total de orbitales que hay en un nivel de energía es igual a n^2, donde n es el número cuántico principal. De esta manera los niveles 1, 2, 3 y 4 contienen 1, 4, 9 y 16 orbitales, respectivamente.

El número cuántico de spin:+1/2, -1/2

Aún antes de que se propusiera el espín electrónico, había indicios experimentales de que los electrones poseían una propiedad adicional. En 1925, los físicos holandeses George E. Uhlenbeck y Samuel Goudsmit, postularon que los electrones tienen una propiedad intrínseca, denominada espín electrónico, mediante el cual se considera al electrón como una esfera diminuta, que gira sobre su propio eje. Debido a que una carga en rotación produce un campo magnético, el espín o giro electrónico genera un campo magnético, cuya dirección depende del sentido de la rotación.
Actividad 3.25
Indaga en diversas fuentes los aportes de Paul Dirac a la construcción del modelo mecánico cuántico.

Fig. 3.34 El spin electrónico.

El espín electrónico \(s \) está cuantizado, y sólo tiene dos posibles valores: \(+1/2\) y \(-1/2\), que se interpreta como las dos direcciones opuestas en las que puede girar el electrón. El espín del electrón se representa por medio de flechas o vectores que indican el sentido positivo (↑) o negativo (↓) del giro del electrón.

3. Procesamiento de la información

Actividad 3.26
En forma colaborativa da respuesta a los siguientes cuestionamientos.

1. ¿Qué diferencias y semejanzas encuentras entre una órbita y un orbital?

<table>
<thead>
<tr>
<th>Semejanzas</th>
<th>Diferencias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Si los electrones en un orbital sólo pueden girar en dos direcciones opuestas, ¿cuántos electrones pueden estar contenidos en un orbital?

__
__

3. ¿Qué forma tienen los orbitales s?

__

4. ¿Qué número cuántico define a un nivel de energía o tamaño de un orbital?

__

5. ¿Qué número cuántico determina la orientación de un orbital en el espacio?

__

6. ¿Qué número cuántico define la forma de los orbitales?

__

7. ¿Qué diferencias y semejanzas encuentras entre un orbital 2s y 3s?

<table>
<thead>
<tr>
<th>Semejanzas</th>
<th>Diferencias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. ¿Cuál es la diferencia entre un orbital 3py y un orbital 3pz?

__
__
__

9. Cuando se dice que el electrón tiene un comportamiento dualístico, ¿a qué nos referimos?

__
__
__

10. ¿Qué físico francés postuló la naturaleza dual del electrón?

__
4. Aplicación de la información

Actividad 3.27

En forma individual o colaborativa resuelva los siguientes cuestionamientos.

1. ¿Por qué los orbitales $4s$, $4p$, $4d$ y $4f$ tienen la misma energía en el átomo de hidrógeno, pero distintas energías en un átomo polielectrónico?

2. ¿Cuáles de los siguientes orbitales no existe? $1s$, $1p$, $2p$, $2d$, $3p$, $3d$, $3f$, $4d$, $4f$, $4g$, $5s$.

3. Una pelota lanzada por un pitcher posee propiedades ondulatorias, pero, ¿por qué no es posible percibir este movimiento?

4. Al colocar el calibrador o manómetro de varilla en el pivote de una llanta, se escucha la salida de aire, ¿consideras que se puede medir con precisión y exactitud la presión interna de la llanta?

5. Si se logra medir con exactitud la posición de un electrón, ¿qué pasará con la velocidad del mismo?

6. Los ejemplos anteriores tienen relación con el principio de incertidumbre de Heisenberg, ¿qué expresa dicho principio?

7. Determine el número de electrones que pueden permanecer en los siguientes subniveles:

<table>
<thead>
<tr>
<th>Subnivel</th>
<th>No. de e⁻</th>
<th>Subnivel</th>
<th>No. de e⁻</th>
<th>Subnivel</th>
<th>No. de e⁻</th>
<th>Subnivel</th>
<th>No. de e⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2p$</td>
<td>$3s$</td>
<td>$3d$</td>
<td>$4p$</td>
<td>$5s$</td>
<td>$5f$</td>
<td>$6d$</td>
<td>$7p$</td>
</tr>
</tbody>
</table>
8. ¿Qué números cuánticos describen al subnivel 5s?

<table>
<thead>
<tr>
<th>n</th>
<th>l</th>
<th>m</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. Si los orbitales tipo s tienen forma esférica, ¿a qué sub niveles pertenecen los orbitales de la siguiente figura?

10. ¿A qué tipo de subnivel pertenecen los orbitales de la siguiente figura?

11. Se denomina así, a la mínima cantidad de energía que puede ser ganada o perdida por un electrón.

 __
 __

12. Físico alemán que en su teoría plantea que los electrones pueden absorber y emitir energía en forma discontinua, en pequeñas cantidades a las que denominó cuantos.

 __
 __

13. Los sub niveles de energía son designados por las letras:

 __
 __

14. Cuando n=4 y l=1, ¿de qué sub nivel se trata?

 __
 __
Analiza cada una de las preguntas iniciales de falso-verdadero y fundamenta tu respuesta.

<table>
<thead>
<tr>
<th>Pregunta</th>
<th>Fundamentación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. El modelo mecano cuántico considera al electrón de naturaleza dual, es decir como onda y como partícula.</td>
<td></td>
</tr>
<tr>
<td>2. El modelo mecano cuántico utiliza el concepto de orbital.</td>
<td></td>
</tr>
<tr>
<td>3. Órbita y orbital significan lo mismo.</td>
<td></td>
</tr>
<tr>
<td>4. En el modelo de Bohr se considera que el electrón se mueve en órbitas definidas.</td>
<td></td>
</tr>
<tr>
<td>5. La teoría cuántica considera que la energía se emite y absorbe en forma continua.</td>
<td></td>
</tr>
<tr>
<td>6. Werner Heisenberg es un físico alemán que enunció el principio de incertidumbre.</td>
<td></td>
</tr>
<tr>
<td>7. El modelo mecano cuántico considera la imposibilidad de conocer la posición y la velocidad del electrón al mismo tiempo.</td>
<td></td>
</tr>
<tr>
<td>8. La luz es de naturaleza ondulatoria y no puede ser considerada de naturaleza corpuscular.</td>
<td></td>
</tr>
<tr>
<td>9. El efecto fotoeléctrico es un fenómeno que muestra la naturaleza corpuscular de la luz y pudo ser explicado por A. Einstein utilizando la teoría cuántica.</td>
<td></td>
</tr>
<tr>
<td>10. Un orbital se define como la región del espacio atómico donde existe mayor probabilidad de encontrar a un electrón.</td>
<td></td>
</tr>
</tbody>
</table>
La distribución de los electrones en el átomo: ¿realmente siguen reglas?

● Describe las reglas para el llenado electrónico.
● Aplica las reglas de Hund, el Principio de Exclusión de Pauli y el Principio de Construcción de Aufbau (regla de la diagonal) para elaborar configuraciones electrónicas de cualquier átomo a partir de su número atómico.
● Valora los aportes del alemán Friedrich Hund, del austriaco Wolfgang Ernst Pauli y del científico mexicano Jaime Keller Torres en la comprensión de estas reglas, teniendo en cuenta, que las mismas son convencionales.

1. Problematización

La distribución de los electrones en el átomo, ¿realmente siguen reglas?

Actividad 3.29

Explora tus conocimientos previos, dando respuesta a las siguientes aseveraciones como falsas o verdaderas.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A la forma como se distribuyen los electrones en los distintos niveles, subniveles y orbitales de un átomo, se denomina configuración electrónica.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>2. La regla de la diagonal fue propuesta por el mexicano Dr. Jaime Keller Torres.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>3. Los electrones deben seguir las reglas para el llenado electrónico.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>4. A los orbitales que pertenecen a un mismo nivel de energía como p, d y f se les denomina orbitales degenerados.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>5. El kernel es una forma de simplificar la configuración electrónica de un átomo, se representa la parte interna mediante el símbolo y número atómico del gas noble correspondiente entre corchetes, seguido de los electrones externos.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>6. Cuando en una configuración electrónica se utilizan flechas, se le denomina vectorial.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>7. En la notación exponencial los electrones se representan mediante exponentes numéricos.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>8. Las reglas para el llenado electrónico son convencionales y nos permiten explicar el comportamiento de los electrones en los átomos.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>9. La notación 5d³ expresa que se encuentran tres electrones en el subnível d del quinto nivel.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>10. La probabilidad de encontrar dos electrones en un mismo átomo que tengan los cuatro números cuánticos iguales es cero.</td>
<td>F</td>
<td>V</td>
</tr>
</tbody>
</table>
2. Adquisición y organización de la información

Actividad 3.30

En forma individual realiza la lectura acerca de las reglas para el llenado electrónico y elabora una síntesis.

Reglas para el llenado electrónico

1. Principio de exclusión de Pauli

Hasta ahora conocemos que un electrón en un orbital está definido por sus cuatro números cuánticos. En 1925, el físico austríaco Wolfgang Pauli formuló su *principio de exclusión* que expresa:

En ningún átomo puede existir un estado tal, que dos de sus electrones tengan los cuatro números cuánticos iguales; al menos un número cuántico debe ser diferente.

Lo cual conduce a establecer que ningún orbital atómico puede contener más de dos electrones. Los dos electrones sólo pueden ocupar el mismo orbital si poseen espines opuestos.

Por ejemplo, el hidrógeno posee un sólo electrón y éste se encuentra en el orbital 1s. El conjunto de números cuánticos que describen a este electrón debe ser:

\[n = 1, \ell = 0, m = 0, s = +1/2 \]

En el átomo de helio, que tiene dos electrones, cada uno debe tener un conjunto distinto de números cuánticos

\[n = 1, \ell = 0, m = 0, s = -1/2 \]
\[n = 1, \ell = 0, m = 0, s = +1/2 \]

2. Regla de Aufbau o principio de construcción.

Esta regla establece que en un átomo polielectrónico, los electrones se distribuyen ocupando los orbitales de los subniveles, en orden creciente de energía. El orden de llenado de los subniveles se obtiene a partir de la suma \(n + \ell \). Cuando dos subniveles tengan el mismo valor de \(n + \ell \) se llena primero el de menor valor de \(n \).

Una forma bastante práctica para ilustrar este principio, es mediante la aplicación de la *regla de la diagonal* propuesta por el mexicano *Jaime Keller Torres*.

En el diagrama, la punta de la flecha indica el orden que se debe seguir para el llenado de los subniveles. Los subniveles que se ubican en la misma diagonal tienen el mismo valor energético \(n + \ell \). Toda diagonal termina en un subnivel \(s \). Obsérvese que cuando varios subniveles tienen el mismo contenido energético (se ubican en la misma diagonal), siempre se llena el subnivel con menor número cuántico principal.
La secuencia energética de los subniveles que resulta de la aplicación de la regla de la diagonal es la siguiente:

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s ...

3. Regla de Hund

La regla de Hund establece que el ordenamiento más estable de electrones, en los subniveles p, d o f, es aquél donde está el número máximo de electrones desapareados, todos ellos con el espín en el mismo sentido.

En otras palabras, mientras no exista un electrón en cada uno de los orbitales de un mismo subnivel p, d o f, no se aparearán los electrones.

También se puede enunciar: “en orbitales del mismo subnivel que tengan el mismo valor de n y l, no puede existir apareamiento electrónico, hasta que exista por lo menos un electrón en cada orbital, con el espín en la misma orientación o sentido.”
En 1956, Jaime Keller Torres era aún estudiante de la antigua Escuela Nacional de Ciencias Químicas de la Universidad Nacional Autónoma de México. Ese año publicó su primer trabajo de investigación con el título: *Configuración electrónica de los átomos*, cuyo contenido estaba enfocado a los principios conceptuales, así como en los aspectos didácticos para la enseñanza de este apasionante tema. Esta publicación, dio lugar al uso de lo que hoy conocemos como la «*Regla de la Diagonal*» en la enseñanza de la distribución electrónica de los átomos. Tenía entonces 19 años cuando se convirtió en fundador y miembro de la actual Sociedad Química de México.

Jaime Keller Torres se tituló de ingeniero químico el 5 de septiembre de 1959, habiendo estudiado también la carrera de física en la Facultad de Ciencias de la UNAM. Ya titulado, presentó sus exámenes de oposición y se convirtió en profesor de asignatura de tiempo completo definitivo en el área de física.

En 1972, cuando regresó de Bristol, Inglaterra, con el grado de doctor en física, se incorporó a la Facultad de Química como profesor de carrera de tiempo completo en el posgrado y comenzó a dirigir tesis de maestría y doctorado en las áreas de química teórica, física atómica, molecular y de estado sólido, métodos matemáticos de la física, métodos computacionales de la física y física fundamental.

Como profesional de la industria trabajó, entre 1958 y 1969, en Industrial Química Pennsalt, S.A., Derivados Macroquímicos, S.A., Quinolinas Industriales, S.A., Cafeína de México, S.A. y Recuperadora y Transformadora de Metales, S.A. Desde el principio de sus actividades docentes consideró que el binomio docencia-investigación era fundamental y, de hecho, sus primeras publicaciones en 1956, fueron resultado de su inquietud por la docencia. Sus publicaciones más recientes en el área de contribuciones fundamentales a la física y química teóricas, tienen también un carácter didáctico.

Como docente y como investigador ha sido prolífico, pero muy importante también ha sido su labor como formador de cuadros académicos y directivos. El doctor Jaime Keller Torres ha sabido imprimir en sus alumnos y colegas características, no solamente científicas, sino también de organización y administración.
Configuraciones electrónicas

A la forma en cómo se distribuyen los electrones en los distintos niveles, subniveles y orbitales de un átomo, en su estado basal, se denomina **configuración electrónica**. Existen diferentes formas de expresar una configuración electrónica, las cuales se detallan a continuación.

Notación exponencial o notación spdf

En este tipo de configuración, los electrones se representan mediante exponentes numéricos. Por ejemplo: La configuración del hidrógeno, es $1s^1$, lo cual se lee «uno ese uno». La configuración del helio, es $1s^2$, lo cual se lee «uno ese dos». La configuración del litio, es $1s^2 \ 2s^1$, lo cual se lee «uno ese dos, dos ese uno».

Notación gráfica, vectorial o diagrama de cajas de orbitales

Este tipo de configuración nos permite indicar el número de electrones en cada orbital y el sentido de los espines de cada uno de ellos, por medio de flechas ↑↓. Veamos algunos ejemplos:

En el caso del hidrógeno ($Z = 1$), se acomoda su único electrón en el orbital $1s$. En la configuración electrónica del helio, se ubican sus dos electrones en el orbital $1s$ con espines opuestos.

En el litio ($Z = 3$), los dos primeros electrones saturan el orbital $1s$, y el tercer electrón se coloca en el orbital $2s$. Con el berilio ($Z = 4$), se satura el orbital $2s$ al ubicarse el cuarto y último electrón con espín opuesto.

¿Sabías que...

Al último electrón que se acomoda en la configuración electrónica de un átomo, siguiendo las reglas de distribución electrónica, se le denomina **electrón diferencial**? Porque éste marca la diferencia en el comportamiento químico entre un átomo de un elemento y otro diferente. Sin embargo, lo que hace diferente a un átomo de otro es su número de protones. ¿Cabría entonces hablar del protón diferencial?

En la configuración electrónica del boro ($Z = 5$), los orbitales $1s$ y $2s$ se saturan con un par de electrones en cada orbital, y su electrón diferencial se ubica en el orbital $2p_x$.

![Diagrama de configuración electrónica](image-url)
¿Sabías que...

a los orbitales que pertenecen a un mismo subnivel se les denomina orbitales degenerados? Su nombre pudiera llevarnos a pensar otra cosa, sin embargo, se les llama así, porque tienen energías equivalentes, ejemplo de ello, son los orbitales p, d y f.

Notación tipo kernel

Este tipo de notación nos permite escribir en forma abreviada o simplificar una configuración electrónica, que de otra forma sería más extensa.

El término kernel fue introducido por Lewis y Langmuir, para designar la parte interna del átomo, que quedaría si la separamos de la capa externa de electrones. El kernel de cualquier átomo se representa con el símbolo químico y número atómico del gas noble correspondiente, entre corchetes, cuyo número de electrones sea inmediato inferior al del átomo que se desea representar.

Así, la configuración tipo kernel del átomo de cloro, ^{17}Cl es: $^{10}\text{Ne} 3s^2 3p^5$

Otros ejemplos:

- $^{11}\text{Na; }^{10}\text{Ne} 3s^1$
- $^{26}\text{Fe; }^{18}\text{Ar} 4s^2 3d^6$
- $^{35}\text{Br; }^{18}\text{Ar} 4s^2 3d^{10} 3p^5$

Actividad 3.31

Indaga en diversas fuentes por qué las configuraciones electrónicas del Cr y del Cu en su estado basal, no corresponden a las que se esperaría.
3. Procesamiento de la información

Actividad 3.32

En forma colaborativa da respuesta a los siguientes cuestionamientos.

1. Explica el significado de la notación $4p^2$.

__

__

__

2. Si escribimos la configuración del (B) en forma exponencial quedaría: $1s^2 2s^2 2p^1$
 ¿Qué posibilidad existe de que el electrón del subnivel $2p$, se ubique en el orbital $2pz$ en vez de ubicarse en el orbital $2px$? ¿Es correcto eso?

__

__

__

3. Si el electrón diferencial del nitrógeno ($Z=7$) se acomoda en $2p_z$, ¿en qué orbital se ubicará el electrón diferencial del oxígeno ($Z=8$)?

__

__

__

4. El último electrón del flúor (F), ¿en qué orbital se sitúa? ¿Tienen los átomos de este elemento todos sus orbitales del segundo nivel saturados?

__

__

5. En el sodio (Na), ¿será posible ubicar su electrón diferencial en el segundo nivel de energía? Si no es posible, explica por qué.

__

__

__

6. Exceptuando al helio, ¿cuántos electrones tienen en su último nivel de energía los átomos de los gases nobles?

__

__

__

7. ¿Qué significado tiene para la escritura de la configuración electrónica la regla de la diagonal?

__

__

__
4. Aplicación de la información

Actividad 3.33

En forma individual o colaborativa resuelva los siguientes cuestionamientos.

1. En la configuración electrónica de un átomo de molibdeno, (42 Mo), ¿qué subnivel es el más externo y cuántos electrones posee en ese subnivel?

2. ¿A quién corresponde la configuración electrónica 1s² 2s² 2p¹?

3. ¿Qué elemento tiene una configuración electrónica [Ar] 4s² 3d³?

4. ¿Cuál es la configuración electrónica del radón?

5. Construya la configuración electrónica del fósforo utilizando los tres tipos de notación: exponencial, vectorial y tipo kernel

 Notación exponencial:__
 Notación vectorial:___
 Notación tipo kernel:___

6. Desarrolla la configuración electrónica tipo kernel para los siguientes elementos químicos:

 12 Mg__
 16 S__
 28 Ni__
 47 Ag__

7. Desarrolla la configuración electrónica tipo exponencial para los siguientes elementos:

 13 Al__
 19 K__
 23 V__
 25 Mn__
5. Autoevaluación

Actividad 3.34

Reflexiona acerca de la siguiente pregunta. ¿Quiénes deben seguir las reglas para el llenado electrónico, nosotros o los electrones?

1. En los orbitales degenerados como \(px, py, pz, d_1, d_2, d_3, d_4, d_5 \), es posible que los electrones no se ajusten a las reglas establecidas de manera convencional. Por ejemplo, en los orbitales del subnivel \(2p \), imaginemos que sólo se encuentra un electrón, ¿donde debe ubicarse, en \(2p_x \), en \(2p_y \) o en \(2p_z \)?

2. A continuación se muestran algunos diagramas de orbitales que representan configuraciones electrónicas de ciertos elementos en su estado basal. ¿Cuál de estos diagramas viola el principio de exclusión de Pauli? ¿Cuál viola la regla de Hund?

3. ¿Cómo valoras los aportes del científico mexicano Jaime Keller Torres en la comprensión de las reglas para el llenado electrónico?
La configuración electrónica y la periodicidad: ubicación de los elementos en la tabla periódica.

- Relaciona la configuración electrónica de un átomo y su ubicación en la tabla periódica.
- Correlaciona la ubicación de un elemento representativo y de transición en la tabla periódica con su configuración electrónica.
- Valora la importancia de la tabla periódica como herramienta para el conocimiento químico.

1. Problematización

En la tabla periódica moderna, ¿qué característica permite ubicar y ordenar a los elementos?

__

__

__

__

Actividad 3.35

Explora tus conocimientos previos, dando respuesta a las siguientes aseveraciones como falsas o verdaderas.

1. D.I. Mendeleiev en 1869 ordenó a los elementos por sus números atómicos y encontró cierta periodicidad en sus propiedades.
 F V

2. El número atómico es un número de orden para cada elemento.
 F V

3. Henry Moseley determinó el número atómico de los elementos en 1913.
 F V

4. La tabla periódica se encuentra constituida por filas (periodos) y columnas (grupos).
 F V

5. A los elementos del subgroupo A, se les denomina representativos.
 F V

6. Los elementos de transición se ubican en los subgrupos B.
 F V

7. La tabla periódica actual se puede dividir en 4 bloques; s, p, d y f.
 F V

8. El bloque s está constituido por los grupos I y II A.
 F V

9. Los electrones de valencia se encuentran siempre en el penúltimo nivel de energía.
 F V

10. Si la configuración electrónica de un elemento termina en s o en p, pertenece al subgroupo A.
 F V
2. Adquisición y organización de la información

Actividad 3.36

En forma individual realiza la lectura acerca del modelo mecano cuántico y elabora una síntesis.

Introducción

¿Te imaginas poder ubicar a los elementos en la tabla periódica a partir de su configuración electrónica? ¿o poder determinar su configuración electrónica conociendo únicamente su ubicación en la tabla? Si analizas un poco la relación que guardan una con la otra, podrás hacerlo sin mucha dificultad. Sin embargo, la organización o clasificación de los elementos no fue cosa fácil. La tabla periódica que hoy conoces es producto del trabajo de muchos investigadores, como Lavoisier, Dobereiner, Chancourtois, Newlands, Meyer, Mendeleiev, Moseley entre otros.

¿Sabías que...

la tabla periódica, se denomina tabla, porque posee filas y columnas? ¿Y que el término periódico alude a la repetición que se presenta en las propiedades químicas de los elementos?

Actividad 3.37

Indaga en diversas fuentes los aportes de los siguientes científicos en la construcción y desarrollo de la tabla periódica.

Dimitri Ivanovich Mendeleiev: __
__
__
__

Lothar Meyer: ___
__
__
__

J.A.Newlands: ___
__
__
__

J.W. Dobereiner: __
__
__
__
¿Cómo están acomodados los elementos químicos en la tabla periódica?

En la tabla periódica se observa una serie de cuadros o casilleros en los cuales se ubican los símbolos de los elementos. A cada elemento químico le corresponde una sola casilla. Los elementos químicos están ordenados consecutivamente con base a su número atómico (Z), de manera ascendente. El número atómico como ya lo hemos estudiado, representa al número de protones en el núcleo de un átomo, el cual coincide con el número de electrones en un átomo neutro. Por tanto, el número atómico es un número de orden, para cada elemento.

Por otra parte, se observan siete hileras horizontales denominadas períodos, los cuales se indican con números arábigos. Un período es un conjunto de elementos con propiedades diferentes, cuyos electrones externos se encuentran en un mismo nivel de energía. El nivel de energía más externo que contiene electrones, nos indica el número del período.

![Tabla periódica moderna](image)

Las masas entre paréntesis son valores aproximados de elementos radiactivos.

Fig. 3.36 Tabla periódica moderna.
Por ejemplo, consideremos las siguientes configuraciones electrónicas del sodio y el bromo:

\[_{11}^{}{}Na\ 1s^2\ 2s^2\ 2p^6\ 3s^1 \]

El nivel más externo es el 3, por tanto, este elemento pertenece al período 3.

\[_{35}^{}{}Br\ 1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^{10}\ 4p^5 \]

El nivel más externo es el 4, por tanto, este elemento pertenece al período 4.

Además, la tabla periódica larga o de 18 columnas, consta como su nombre lo indica, de 18 columnas verticales, denominadas grupos o familias. Un grupo o familia se define como un conjunto de elementos con las mismas propiedades químicas. Los grupos se indican con números romanos del I al VIII, A o B; aunque la IUPAC recomienda utilizar la numeración árabe del 1 al 18.

A los elementos del subgrupo A, se les denomina representativos, dado que el número de electrones del nivel más externo (electrones de valencia) representan el número del grupo al cual pertenecen. Todos los elementos representativos terminan su configuración electrónica en un subnivel s o en un subnivel p, formando así dos grandes conjuntos conocidos como bloques s y p.

¿Sabías que...

los electrones de valencia, son los electrones que se localizan en el nivel más alto de energía de un átomo? Estos electrones son los responsables de las propiedades químicas de los elementos.

A los elementos del subgrupo B se les denomina elementos de transición y de transición interna. Los elementos de transición forman ocho grupos: IB (3) hasta IIB (12). Los elementos de transición interna se dividen en la serie de los lantánidos y serie de los actínidos. En la serie de los actínidos se encuentran los elementos transuránidos (elementos que están después del uranio), y que son altamente radiactivos.

Los elementos de transición se encuentran llenando en su configuración electrónica un subnivel d, formando así un conjunto de elementos conocido como bloque d. Los elementos de transición interna, se encuentran llenando en su configuración electrónica el subnivel f, formando así un conjunto de elementos, conocido como bloque f. Así, la tabla periódica se divide en cuatro bloques: s, p, d y f, dependiendo del subnivel donde se ubica el electrón diferencial. El subnivel donde se ubica el electrón diferencial determina el bloque donde se localiza el elemento. El subgrupo A está constituido por los bloques s y p; y el subgrupo B por los bloques d y f.

Fig. 3.37 Bloques s, p, d y f.
El bloque s está constituido por los grupos I A y II A, puesto que en el subnivel s caben dos electrones. Los del grupo I A terminan su configuración electrónica en ns1 y los del grupo II A en ns2.

En la parte derecha de la tabla periódica se localizan los elementos del bloque p. Dado que el subnivel p tiene capacidad para seis electrones, en el bloque p aparecen seis grupos, del IIIA al VIIIA, cuya configuración electrónica externa varía desde np1 hasta np6. Los elementos del bloque d se encuentran situados en la parte central de la tabla, y terminan su configuración electrónica en nd1 hasta nd10. Si se desea determinar el grupo al que pertenece un elemento de transición, se suman los electrones externos del subnivel s, con los electrones del subnivel d.

En la parte inferior de la tabla se encuentran los elementos del bloque f, y su configuración electrónica externa varía desde nf1 hasta nf14.

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Número de electrones en el último nivel</th>
<th>Configuración electrónica externa</th>
</tr>
</thead>
<tbody>
<tr>
<td>I A</td>
<td>1</td>
<td>s1</td>
</tr>
<tr>
<td>II A</td>
<td>2</td>
<td>s2</td>
</tr>
<tr>
<td>III A</td>
<td>3</td>
<td>s2p1</td>
</tr>
<tr>
<td>IV A</td>
<td>4</td>
<td>s2p2</td>
</tr>
<tr>
<td>V A</td>
<td>5</td>
<td>s2p3</td>
</tr>
<tr>
<td>VI A</td>
<td>6</td>
<td>s2p4</td>
</tr>
<tr>
<td>VII A</td>
<td>7</td>
<td>s2p6</td>
</tr>
<tr>
<td>VIII A</td>
<td>8</td>
<td>s2p6</td>
</tr>
</tbody>
</table>

Tabla 3.4 Configuración electrónica externa de los elementos representativos.

Los siguientes ejemplos, muestran cómo determinar el grupo, subgrupo, periodo y bloque al que pertenecen los elementos representativos a partir de sus números atómicos.

\[^{11}\text{Na} \ 1s^2 \ 2s^2 \ 2p^6 \ 3s^1 \]

El nivel de energía más externo es el 3, por tanto, este elemento pertenece al período 3.

El número de electrones externos es 1, por tanto, pertenece al grupo I (1)

La configuración electrónica termina en un subnivel s, por tanto, pertenece al subgrupo A y al bloque s.

La información que nos proporciona la configuración electrónica, es que el sodio se encuentra en el grupo I (1), en el subgrupo A, en el período 3 y en el bloque s.
La información que nos proporciona la configuración electrónica, es que el bromo, se encuentra en el grupo VII (17), en el subgrupo A, en el período 4 y en el bloque p. Los siguientes ejemplos, muestran la forma de determinar el grupo, subgrupo, periodo y bloque al que pertenecen los elementos de transición a partir de sus números atómicos.

Ejemplo 1:

La configuración electrónica esperada para el átomo de cobre, es $\left[18 \text{Ar} \right] 4s^2 3d^9$. Sin embargo, en la configuración más estable del cobre, hay dos electrones para cada uno de los cinco orbitales del subnivel 3d, quedando un sólo electrón en el subnivel 4s: $\left[18 \text{Ar} \right] 4s^1 3d^{10}$. Esto se explica porque los orbitales 4s y 3d son casi de la misma energía. Pues bien, si deseamos utilizar la configuración electrónica tipo kernel del cobre, tendríamos, que al
sumar los electrones del último y penúltimo subnivel [\textit{18 Ar}] 4s1 3d10, nos da un total de 11, esto coincide con la numeración arábiga de los grupos, pero cuando deseamos utilizar la numeración romana, entonces la configuración [\textit{18 Ar}] 4s1 3d10, nos permite determinar que el grupo es el IB, porque cuando el subnivel d se encuentra lleno, no se suman sus electrones con los del último nivel.

Así, la información que nos proporciona la configuración electrónica, [\textit{18 Ar}] 4s1 3d10, es que el cobre (Cu), se encuentra en el grupo IB o grupo\textit{11}, en el subgrupo B, en el período 4 y en el bloque d.

3. Procesamiento de la información

Actividad 3.38

En forma colaborativa contesta los siguientes cuestionamientos.

1. Escribe la configuración electrónica y determine el grupo, subgrupo, período y bloque de los siguientes elementos representativos. Después de realizar este ejercicio, ubica a cada elemento en la tabla periódica que se muestra abajo.

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Configuración electrónica</th>
<th>Grupo</th>
<th>Subgrupo</th>
<th>Período</th>
<th>Bloque</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 Cl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33 As</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 Al</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 Ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 Ga</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Escriba la configuración electrónica y determine el grupo, subgrupo, período y bloque de los siguientes elementos de transición. En la tabla que se muestra abajo ubica a cada elemento.

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Configuración electrónica</th>
<th>Grupo</th>
<th>Subgrupo</th>
<th>Período</th>
<th>Bloque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(_{30})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti(_{22})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn(_{25})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu(_{29})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co(_{27})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag(_{47})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(_{26})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au(_{79})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd(_{46})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hg(_{80})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. ¿Por qué el Zn, Cd y Hg no pueden ser considerados estrictamente elementos de transición?

__
__
__
__
__
__
4. Aplicación de la información

Actividad 3.39

En forma individual o colaborativa resuelva los siguientes cuestionamientos:

1. Determina con base en la configuración electrónica, el grupo, subgrupo, período y bloque de cada elemento. Una vez realizado el ejercicio, ubica a cada elemento por su posición en la tabla periódica que se muestra de abajo.

<table>
<thead>
<tr>
<th>Configuración electrónica</th>
<th>Z</th>
<th>Grupo</th>
<th>Subgrupo</th>
<th>Período</th>
<th>Bloque</th>
<th>Elemento</th>
</tr>
</thead>
<tbody>
<tr>
<td>1s² 2s² 2p⁶ 3s² 3p³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1s² 2s² 2p⁶ 3s² 3p³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1s² 2s² 2p⁶ 3s² 3p³ 4s² 3d¹⁰ 4p⁶ 5s¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1s² 2s² 2p⁶ 3s² 3p³ 4s² 3d¹⁰ 4p³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1s² 2s² 2p⁶ 3s² 3p³ 4s² 3d¹⁰ 4p³ 5s² 4d¹⁰ 5p²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Si analizamos las configuraciones electrónicas externas del Li, Na, K, Rb, Cs y Fr, ¿qué tienen en común?

__
__
__
__
__
__
3. Determina con base en la configuración electrónica, el grupo, subgrupo, período y bloque de cada elemento de transición. Una vez realizado el ejercicio, ubica a cada elemento por su posición en la tabla periódica.

<table>
<thead>
<tr>
<th>Configuración electrónica</th>
<th>Z</th>
<th>Grupo</th>
<th>Subgrupo</th>
<th>Período</th>
<th>Bloque</th>
<th>Elemento</th>
</tr>
</thead>
<tbody>
<tr>
<td>1s(^2) 2s(^2) 2p(^6) 3s(^2) 3p(^6) 4s(^2) 3d(^3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1s(^2) 2s(^2) 2p(^6) 3s(^2) 3p(^6) 4s(^2) 3d(^1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1s(^2) 2s(^2) 2p(^6) 3s(^2) 3p(^6) 4s(^2) 3d(^8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1s(^2) 2s(^2) 2p(^6) 3s(^2) 3p(^6) 4s(^2) 3d(^10) 4p(^6) 5s(^2) 4d(^5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1s(^2) 2s(^2) 2p(^6) 3s(^2) 3p(^6) 4s(^1) 3d(^5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1s(^2) 2s(^2) 2p(^6) 3s(^2) 3p(^6) 4s(^2) 3d(^10) 4p(^6) 5s(^2) 4d(^6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1s(^2) 2s(^2) 2p(^6) 3s(^2) 3p(^6) 4s(^2) 3d(^10) 4p(^6) 5s(^2) 4d(^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1s(^2) 2s(^2) 2p(^6) 3s(^2) 3p(^6) 4s(^2) 3d(^10) 4p(^6) 5s(^2) 4d(^7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Autoevaluación

Actividad 3.40

Analiza cada una de las preguntas iniciales de falso-verdadero y fundamenta tu respuesta.

<table>
<thead>
<tr>
<th>Pregunta</th>
<th>Fundamentación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. D.I. Mendeleiev en 1869 ordenó a los elementos por sus números atómicos y encontró cierta periodicidad en sus propiedades.</td>
<td></td>
</tr>
<tr>
<td>2. El número atómico es un número de orden para cada elemento.</td>
<td></td>
</tr>
<tr>
<td>3. Henry Moseley determinó el número atómico de los elementos en 1913.</td>
<td></td>
</tr>
<tr>
<td>4. La tabla periódica se encuentra constituida por filas (periodos) y columnas (grupos).</td>
<td></td>
</tr>
<tr>
<td>5. A los elementos del subgrupo A, se les denomina representativos.</td>
<td></td>
</tr>
<tr>
<td>6. Los elementos de transición se ubican en los subgrupos B.</td>
<td></td>
</tr>
<tr>
<td>7. La tabla periódica actual se puede dividir en 4 bloques; s, p, d y f.</td>
<td></td>
</tr>
<tr>
<td>8. El bloque s está constituido por los grupos I y II A.</td>
<td></td>
</tr>
<tr>
<td>9. Los electrones de valencia se encuentran siempre en el penúltimo nivel de energía.</td>
<td></td>
</tr>
<tr>
<td>10. Si la configuración electrónica de un elemento termina en s o en p, pertenece al subgrupo A.</td>
<td></td>
</tr>
</tbody>
</table>
La tabla periódica: ¿por qué es una herramienta importante en el estudio de la química?

- Define a metales, no metales, metaloides y gases nobles.
- Predice por su ubicación en la tabla periódica, las características y el tipo de elemento al que pertenece: metales, no metales, metaloides y gases nobles, representativo o de transición.
- Valora la importancia biológica, económica y social de los elementos químicos para el país.

1. Problematización

¿Por qué la tabla periódica es una herramienta importante en el estudio de la química?

 Actividad 3.41

Explora tus conocimientos previos, dando respuesta a las siguientes aseveraciones como falsas o verdaderas.

1. La tabla periódica permite predecir que el Fr en cantidades suficientes será líquido.
F V

2. El oxígeno y el nitrógeno son dos gases nobles de gran importancia.
F V

3. Los metales se ubican a la izquierda y al centro de la tabla periódica.
F V

4. Las mejores fuentes de hierro son las vísceras, el hígado, los quelites, acelgas y espinacas.
F V

5. La presencia de fosfatos en ríos y lagos provoca el crecimiento excesivo de plantas acuáticas.
F V

6. El hierro es el constituyente esencial de la clorofila en las plantas verdes.
F V

7. El mercurio es el único elemento líquido.
F V

8. Los metaloides se ubican arriba y abajo de la línea diagonal que divide a los metales de los no metales.
F V

9. La deficiencia de yodo es la causa del bocio en los humanos.
F V

10. Los no metales son maleables, dúctiles y buenos conductores del calor y la electricidad.
F V
2. Adquisición y organización de la información

Actividad 3.42

En forma colaborativa y mediante la técnica del rompecabezas, lee acerca de las características de los metales, no metales y metaloides, así como de su importancia biológica y económica.

Características de metales, no metales, metaloides: importancia biológica, económica y social.

De los 114 elementos que se conocen a la fecha, sólo 92 elementos son naturales. De estos, 11 elementos son gasosos a temperatura ambiente (25°C), (He, Ne, Ar, Kr, Xe, Rn, H₂, O₂, F₂, Cl₂, N₂), sólo dos son líquidos (Br₂, Hg) y el resto son sólidos. De manera recurrente, algunas tablas periódicas muestran al Ga y al Cs como elementos líquidos; es importante precisar que sí lo son, pero a temperaturas mayores de 25°C, por ejemplo, el galio puede fundir a la temperatura de la palma de la mano. También en ocasiones se muestra al francio, Fr, como elemento líquido, sin embargo, no se han obtenido cantidades suficientes para comprobarlo, pero la tendencia periódica nos permite predecir que éste puede ser líquido.

En función de sus propiedades los elementos químicos se clasifican en la tabla periódica como: metales, no metales, metaloides y gases nobles.
Metales

La mayoría de los elementos de la tabla periódica son metales, como podrás observar en la tabla periódica que se muestra. Los metales se localizan a la izquierda y al centro. Sin embargo, en la parte inferior derecha de la tabla periódica se encuentran también algunos metales, como el estaño, (Sn), el plomo (Pb) y el bismuto, (Bi).

Entre sus propiedades físicas podemos encontrar que generalmente tienen brillo, cuando son lisos y limpios, sólidos a temperatura ambiente (excepto el mercurio, Hg, que es un líquido), buenos conductores del calor y la electricidad, dúctiles y maleables, lo que significa que se pueden laminar y hacer alambres y monedas con ellos. Presentan altos puntos de fusión y bajas energías de ionización. Entre sus propiedades químicas encontramos que reaccionan con los no metales para formar óxidos básicos, hidróxidos y sales, entre otros. Tienen gran tendencia a perder electrones y formar cationes (iones de carga positiva). Con excepción del estaño, plomo y bismuto, los metales tienen uno, dos, y hasta tres electrones de valencia, que pueden ser fácilmente cedidos, eso les hace ser reductores. El carácter metálico aumenta de arriba hacia abajo en la tabla periódica y de derecha a izquierda.

![Fig. 3.39 El carácter metálico y sus tendencias en la tabla periódica.](image)

A los metales los encontramos en todas partes, en muchos de los objetos que usamos a diario: monedas, cucharas, tenedores, automóviles, casas, computadoras, bicicletas, sillas, mesas, sartenes, estufas, refrigeradores, cables, en fin son innumerables los objetos construidos con metales.

![Fig. 3.40 Objetos elaborados con diferentes metales](image)
Importancia biológica, económica y social de algunos metales

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Nombre</th>
<th>Características, aplicaciones e importancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>Aluminio</td>
<td>Es un metal ligero, resistente a la corrosión, dúctil y maleable, se emplea en construcción, en partes para vehículos, aviones y utensilios domésticos, empaque de alimentos, electrónica. Se extrae de la bauxita, la cual contiene alúmina (Al₂O₃), pero resulta mucho más barato reciclarlo, porque se ahorra el 95% de la energía que se utiliza para separarlo del mineral. En México no existen yacimientos de bauxita. El compuesto sulfato de aluminio (Al₂SO₄)₃ conocido como alumbre, se utiliza además como antitranspirante y como floculante de las partículas suspendidas en la purificación del agua.</td>
</tr>
<tr>
<td>Co</td>
<td>Cobalto</td>
<td>Metal de color azul plateado, esencial para la vida, participa en la coenzima de la vitamina B₁₂. Se emplea en la elaboración de aceros especiales, debido a su alta resistencia al calor, corrosión y fricción. También se emplea como pigmento azul para el vidrio, en la elaboración de imanes permanentes (Alnico). Su isótopo radiactivo, ⁶⁰Co, se utiliza para producir radiaciones gamma utilizadas en el tratamiento del cáncer. En 1983, en Ciudad Juárez Chihuahua, sucedió uno de los accidentes nucleares más graves de América Latina, una fuente de cobalto-60, fue fundida con hierro, produciéndose varilla contaminada, que posteriormente fue utilizada en construcción.</td>
</tr>
<tr>
<td>Cu</td>
<td>Cobre</td>
<td>Metal de color café rojizo que se emplea principalmente como conductor eléctrico, en la elaboración de monedas y aleaciones como el latón y el bronce. Cuando el cobre se carbonata se pone de color verde. Un exceso de cobre elimina las algas del acuario. El cobre es esencial para los seres vivos, porque participa activamente en la síntesis de hemoglobina y ayuda a la absorción del hierro. Existen yacimientos de minerales de cobre en Sonora, Zacatecas y Chihuahua.</td>
</tr>
<tr>
<td>Cr</td>
<td>Cromo</td>
<td>Metal de color blanco azulado, se utiliza principalmente en la fabricación de aleaciones especiales y en el cromado de metales para protegerlos de la corrosión. Algunos de sus compuestos más importantes son los dicromatos de sodio y de potasio, Na₂Cr₂O₇ y K₂Cr₂O₇, respectivamente, utilizados como agentes oxidantes en síntesis orgánica. El Cr₂O₃, óxido de cromo (III), se utiliza en la fabricación de abrasivos y en pinturas, es de color verde. El cromo (III) constituye un nutriente esencial para el metabolismo de la glucosa, proteínas y grasas en los mamíferos. Los compuestos de cromo (VI) son muy tóxicos y posibles cancerígenos.</td>
</tr>
<tr>
<td>Símbolo</td>
<td>Nombre</td>
<td>Características, aplicaciones e importancia</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Cd</td>
<td>Cadmio</td>
<td>Es un metal plateado que se obtiene en la refinación del zinc. Se utiliza en la fabricación de baterías recargables NiCd (níquel-cadmio). El seleniuro y telururo de cadmio son semiconductores y se utilizan en la industria electrónica. Se utiliza en la fabricación de aleaciones de bajo punto de fusión. El cadmio es tóxico, carcinógeno y teratógeno. Por ello, se ha reducido su uso en las últimas décadas. El cadmio se puede reciclar, es importante no tirar las baterías recargables a la basura, para evitar la contaminación del suelo y mantos freáticos.</td>
</tr>
<tr>
<td>Fe</td>
<td>Hierro</td>
<td>Metal plateado, cuyas principales fuentes son la hematita (Fe₂O₃) y la magnetita (Fe₃O₄). Es el más importante de todos los metales, usado principalmente en la producción de aceros y herramientas. Es un elemento esencial y no tóxico. Participa en los sistemas de transferencia electrónica, en almacenamiento y transporte de oxígeno, almacenamiento de hierro y en enzimas. La deficiencia de hierro produce anemia. Las mejores fuentes de hierro son el hígado, riñones, carnes rojas y vegetales. El hierro, se administra por vía oral en sales de sulfato ferroso.</td>
</tr>
<tr>
<td>Li</td>
<td>Litio</td>
<td>El litio es un metal blando, blanco plateado. Se usa en aleaciones (con Al y Mg). En la fabricación de lubricantes o grasas y en la síntesis orgánica. En la producción de baterías de iones litio, utilizadas en teléfonos celulares, videocámaras, relojes, etc. El carbonato de litio se utiliza en el tratamiento de trastornos maníaco-depresivos, aunque cantidades grandes de sales de litio dañan el sistema nervioso central.</td>
</tr>
<tr>
<td>Mg</td>
<td>Magnesio</td>
<td>El magnesio es un metal grisáceo, plateado y relativamente blando. Se utiliza como electrodo de sacrificio para proteger otros metales. Se utiliza en la fabricación de bombillas de magnesio, luces de bengala, fuegos artificiales. En aleaciones ligeras, para rines, fuselaje de aviones y automóviles. El reciclado de las latas de aluminio permite también recuperar el magnesio, porque se encuentra aleado al aluminio. Es un elemento esencial y no tóxico. Se usa en medicamentos para la indigestión y acidéz estomacal, en la leche de magnesia, Mg(OH)₂ y como purgante en la sal de Empson, MgSO₄. Es un constituyente esencial de la clorofila en las plantas verdes.</td>
</tr>
<tr>
<td>Mn</td>
<td>Manganese</td>
<td>Es un metal duro, plateado, se utiliza en la producción de aceros. En la fabricación de pilas secas, se usa el dióxido de manganeso, MnO₂. Es un elemento esencial, no tóxico. La química del manganeso está nominada por el ion manganato y el ion permanganato. El KMnO₄ es un agente oxidante fuerte y corrosivo para el tejido humano. Se utiliza en la purificación del agua y se prefiere más que el Cl₂, por dos razones, no afecta el sabor del agua y el MnO₂ producido es un coagulante para las partículas suspendidas.</td>
</tr>
<tr>
<td>Símbolo</td>
<td>Nombre</td>
<td>Características, aplicaciones e importancia</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Hg</td>
<td>Mercurio</td>
<td>Es un metal líquido, plateado, usado en la producción de cloro e hidróxido de sodio, luces mercuriales, fungicidas, aparatos eléctricos, termómetros, baterías, explosivos, pinturas, amalgamas. Es tóxico, dañino por inhalación, ingestión y contacto. Una exposición prolongada o repetida puede ocasionar daño a riñones, cerebro y sistema nervioso, provocando la enfermedad conocida como de Minamata. Se denomina así, porque en la ciudad de Minamata, Japón, en la década de los 50, murieron 46 personas por consumir pescado y mariscos contaminados con metilmercurio, diez años después el número de víctimas aumentó considerablemente.</td>
</tr>
<tr>
<td>Pb</td>
<td>Plomo</td>
<td>Es un metal blando, de color gris, usado en acumuladores, cables, pinturas (aunque se ha reducido su uso por su toxicidad), vitrales, soldadura, protector de radiación, vidrio (cristal de plomo), balas. Casi el 80% del plomo utilizado se recicla de acumuladores y fuentes industriales para evitar mayor contaminación. Es tóxico, carcinógeno y teratógeno. El plomo puede causar perturbación de la biosíntesis de hemoglobina y anemia, daño a los riñones, perturbación del sistema nervioso (saturnismo), daño al cerebro, disminución de la fertilidad del hombre a través del daño en el esperma, disminución de las habilidades de aprendizaje de los niños.</td>
</tr>
<tr>
<td>Ag</td>
<td>Plata</td>
<td>Es un metal blando de color plateado. Utilizado en fotografía, joyería, industria eléctrica, vidrio (espejos), aleaciones, monedas, vajillas, soldaduras. El yoduro de plata se utiliza para bombardear las nubes y modificar los patrones de lluvia en determinadas zonas. Los estados productores de plata en el país son: Guerrero, Guanajuato, Zacatecas, San Luis Potosí, Hidalgo.</td>
</tr>
<tr>
<td>Au</td>
<td>Oro</td>
<td>Es un metal de color amarillo, blando, dúctil brillante y de gran valor. Se emplea en joyería, monedas, industria electrónica, piezas dentales, aunque formando aleaciones con otros elementos. No tiene ningún rol biológico, no es tóxico. Sin embargo, algunos compuestos de oro, se utilizan como fármacos antirreumáticos.</td>
</tr>
</tbody>
</table>
No metales

Los no metales se encuentran en la parte superior derecha de la tabla periódica. Entre sus propiedades físicas podemos encontrar que generalmente son gases, como el flúor, cloro, oxígeno y nitrógeno o sólidos quebradizos, como el carbono (grafito), el yodo, el azufre y el fósforo (excepto el bromo, que es un líquido).

Algunos autores clasifican a los gases nobles como no metales. Sin embargo, deben ser abordados separadamente, porque en general no presentan las propiedades de los no metales. Los no metales son malos conductores del calor y la electricidad, no son maleables, ni dúctiles. Sus puntos de fusión tienden a ser más bajos comparados con los metales. Entre sus propiedades químicas encontramos que reaccionan con los metales y consigo mismo, para formar muchos y muy variados compuestos, como: óxidos ácidos, oxiácidos, hidrácidos, hidruros, sales, entre muchos otros. Con excepción del carbono, los no metales tienen cinco, seis o siete electrones de valencia. Tienen gran tendencia a ganar uno, dos y hasta tres electrones para formar aniones (iones de carga negativa). Son muy electronegativos y oxidantes.

Fig. 3.41 El carácter no metálico y sus tendencias en la tabla periódica.

Fig. 3.42 Los niveles macroscópico y submicroscópico de algunos no metales.
Importancia biológica, económica y social de algunos metales

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Nombre</th>
<th>Características, aplicaciones e importancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Azufre</td>
<td>No metal sólido de color amarillo, se emplea en la elaboración de fertilizantes, medicamentos, insecticidas, productos químicos y petroquímicos. Es clave para la industria química. Es un elemento esencial, no es tóxico como elemento o como sulfato. Se encuentra en yacimientos volcánicos y aguas sulfuradas. En México buena parte del azufre utilizado se obtiene de los pozos petroleros. El SO₂ es uno de los gases que contribuyen a la generación de lluvia ácida. Las mayores emisiones de SO₂ provienen del combustóleo empleado en las termoeléctricas, y de la gasolina utilizada por los automóviles. Su mayor efecto en el ser humano es la irritación de los ojos, la piel y el sistema respiratorio, donde puede causar serios daños a los pulmones.</td>
</tr>
<tr>
<td>Br</td>
<td>Bromo</td>
<td>Es un líquido denso de color rojo oscuro y olor sofocante. Se utiliza en síntesis orgánica para obtener compuestos bromados. Los compuestos orgánicos bromados se utilizan en pesticidas, en retardadores de flama y en la industria fotográfica (aunque su uso ha disminuido por las cámaras digitales). El agua de mar, lagos salados y salmuera natural son las principales fuentes de bromo.</td>
</tr>
<tr>
<td>C</td>
<td>Carbono</td>
<td>Es un sólido que se presenta en la naturaleza como elemento (en forma de grafito y diamante), pero principalmente como hidrocarburos (gas metano, aceite y carbón) y carbonatos. Las propiedades varían de una forma alotrópica a otra. Así, el grafito es sólido negro quebradizo, utilizado en la fabricación de minas para lápices, electrodos para baterías, carbón activado. Es esencial para toda forma de vida. El diamante sólido cristalino de calidad no gema se utiliza como abrasivo y en herramientas de corte y brocas para taladro. Estados Unidos es el principal productor de diamantes sintéticos, mientras que las reservas de diamantes de calidad gema se encuentran en África, Australia, Canadá y Rusia.</td>
</tr>
<tr>
<td>Cl</td>
<td>Cloro</td>
<td>Es un gas amarillo verdoso, denso, usado como agente blanqueador y en la síntesis de compuestos orgo-clorados y polímeros como el PVC, en el tratamiento de aguas. Es un elemento esencial, tóxico como Cl₂. Las fuentes de cloro están estrechamente relacionadas con las de Na y K. El cloro en forma de radical destruye en la estratósfera la capa de ozono. En casa se utiliza el hipoclorito de sodio, conocido frecuentemente como cloro, para desinfectar y blanquear la ropa.</td>
</tr>
<tr>
<td>Símbolo</td>
<td>Nombre</td>
<td>Características, aplicaciones e importancia</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>F</td>
<td>Flúor</td>
<td>Es gas amarillo pálido, el más reactivo de todos los elementos. Utilizado para producir hexafluoruro de uranio, UF₆, para los procesos de enriquecimiento del combustible nuclear, así como para producir hexafluoruro de azufre, SF₆. El HF, fluoruro de hidrógeno, se utiliza en la producción de la mayoría de los compuestos fluorados. El fluoruro de sodio se utiliza en pastas dentales y en el tratamiento del agua. Una solución de fluoruro de sodio al 0.2% para enjuague bucal se utiliza en la prevención de caries. Es un elemento esencial, pero en exceso es muy tóxico, corrosivo y oxidante. Está contenido en la fluorita, CaF₂, en la fluoroapatita, Ca₅F(PO₄)₃, y en la hidroxiapatita, Ca₁₀(PO₄)₆(OH)₂, de donde se obtiene el flúor.</td>
</tr>
<tr>
<td>P</td>
<td>Fósforo</td>
<td>Es un no metal que se presenta en diferentes formas alotrópicas: el fósforo blanco es blando y flamable, el fósforo rojo es sólido y usualmente no flamable. Es un elemento básico para toda forma de vida, es un constituyente del tejido vegetal y animal, es muy tóxico como fósforo blanco. La fosfina, PH₃, es muy venenosa, así mismo los compuestos organofosforados. El fosfato de calcio se encuentra en los huesos, dientes y DNA. Se emplea como fosfato en la elaboración de fertilizantes, detergentes, laca, cerámicas, insecticidas, plaguicidas, pinturas, ácido fosfórico, cerillos. El ácido fosfórico es responsable del sabor ácido de muchos refrescos. Los fertilizantes de fosfato son esenciales para los cultivos, pero los fosfatos de las aguas residuales que fluyen a los ríos y lagos, contribuyen al crecimiento excesivo de algas (provocando la eutrofización) cuya presencia hace disminuir la cantidad de oxígeno, afectando la vida acuática.</td>
</tr>
<tr>
<td>I</td>
<td>Yodo</td>
<td>Es un no metal sólido, de color negro brilloso, fácilmente sublimable. Sus compuestos son usados en complementos alimenticios, colorantes, catálisis, productos farmacéuticos. Es un elemento esencial, sus vapores son dañinos. El alimento yodado para gallinas aumenta la producción de huevos. El yodo también se utiliza como antiséptico para heridas y como desinfectante de piscinas. La deficiencia de yodo en los animales provoca la enfermedad denominada bocio. El isótopo radiactivo yodo-131, se utiliza para destruir el tejido tiroideo y disminuir la actividad de la tiroides. Como ya lo hemos mencionado, el yoduro de plata, AgI, se utiliza para inducir la lluvia. El aditivo alimenticio de color rojo E127, eritrosina B, utilizado en bebidas gaseosas y gelatinas, es un pigmento que contiene elevado contenido de yodo.</td>
</tr>
</tbody>
</table>
Metaloides

Los metaloides se encuentran abajo y arriba de la línea diagonal que divide a los metales de los no metales. A los metaloides también se les conoce como anfóteros o semimetales, debido a que presentan tanto características metálicas como no metálicas. Entre ellos se encuentran el boro, silicio, germanio, arsenico, antimonio, telurio, polonio y astato. En general son elementos sólidos y con cierto brillo metálico. Son semiconductores. Un semiconductor es un elemento que no conduce la electricidad tan bien como un metal, pero lo hace mejor que un no metal. La propiedad semiconductor del silicio hizo posible la revolución de las computadoras.

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Nombre</th>
<th>Características, aplicaciones e importancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Nitrógeno</td>
<td>Es un gas incoloro e inodoro, que se obtiene del aire líquido. Constituye el 78% en volumen de la atmósfera terrestre. Usado en fertilizantes, explosivos, plásticos, tintes, producción de amoníaco y ácido nítrico, llenado de llantas o para proporcionar una atmósfera inerte. El nitrógeno líquido es un importante refrigerante. La criogenización con nitrógeno líquido se ha utilizado para conservar esperma y óvulos, pero en un futuro podrá ser utilizada para conservar seres humanos vivos, en condiciones de congelación hasta encontrar cura para sus enfermedades. El nitrógeno líquido también se utiliza en cirugía para eliminar verrugas. El nitrógeno es un elemento esencial para toda forma de vida, presente en las proteínas.</td>
</tr>
<tr>
<td>O</td>
<td>Oxígeno</td>
<td>Es un gas incoloro e inodoro, que se obtiene del aire líquido. El oxígeno líquido tiene un color azul pálido. Forma casi el 20% en volumen de la atmósfera terrestre. Casi el 47% de la corteza terrestre está formada por compuestos que contienen oxígeno, por ejemplo: agua, piedra caliza, sílice, silicatos, etc. Existe sólo en dos formas alotrópicas: O₂, O₃. Es un elemento básico y esencial para la vida, se convierte en CO₂ en la respiración. Su principal uso es como combustible (sopletes oxiacetílicos), para ayudar a la respiración en condiciones especiales (hospitales, aviones, naves espaciales) en la fabricación del acero. Por coincidencia de la naturaleza el oxígeno líquido tiene el mismo color del cielo. Sin embargo, estos dos fenómenos no tienen ninguna relación, ya que el azul del cielo se debe a la dispersión de Rayleigh. La cual ocurre cuando la luz viaja a través de cuerpos sólidos, líquidos y gases transparentes más pequeños que la longitud de onda de los fotones dispersados.</td>
</tr>
</tbody>
</table>

Fig. 3.43 El carácter anfótero o semimetalico de los elementos y sus tendencias en la tabla periódica.
Importancia biológica, económica y social de algunos metaloides

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Nombre</th>
<th>Características, aplicaciones e importancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>Arsénico</td>
<td>Es un metaloide de color gris, blando, y brilloso. Usado en aleaciones y semiconductores. Es muy tóxico en pequeñas dosis, la dosis letal es de 130 mg. Las sales de arsénico y la arsina, AsH₃, son muy tóxicas. Se utiliza como insecticida y en la conservación de la madera, como arseniato de cobre y cromo. Sin embargo, se debe tener cuidado al quemar o dejar pudrir la madera curada con este compuesto porque se libera arsénico y cromo al ambiente. Se sospecha que puede contribuir a varios tipos de cáncer: de piel, vejiga y pulmones. El arsénico se utiliza como agente dopante en los semiconductores. Un dopante es una impureza que se introduce en un semiconductor en cantidades mínimas para incrementar su conductividad eléctrica.</td>
</tr>
<tr>
<td>B</td>
<td>Boro</td>
<td>El boro impuro es un polvo de color oscuro, pero puro es de color gris plateado. Se obtiene de los depósitos de borax. Se utiliza en la fabricación de vidrio resistente al calor y en cerámica (refractarios). También se utiliza en la producción de lentes ópticos. Es esencial para las plantas, es ligeramente tóxico para los insectos, por ello se utiliza como insecticida, más en el control de cucarachas y hormigas. El bórax se utiliza como fungicida. El boro amorfo se utiliza en pirotecnia para obtener un color verde.</td>
</tr>
<tr>
<td>Ge</td>
<td>Germanio</td>
<td>El germanio es un metaloide sólido de color blanco plateado. Se utiliza en la industria eléctrica y de semiconductores, en aleaciones y la fabricación de vidrios especiales. No tiene ningún rol biológico.</td>
</tr>
<tr>
<td>Si</td>
<td>Silicio</td>
<td>El silicio amorfo es de color negro. Es un metaloide que se obtiene por reducción al calentar arena con carbono o carburo de calcio en un horno eléctrico. Ultrapuro, grado semiconductor es de color azul grisáceo. La sílice, SiO₂, es un material de extraordinaria importancia: principal componente del vidrio y la industria de la construcción consume grandes cantidades de este producto. El vidrio de cuarzo puede soportar cambios bruscos de temperatura. Usado en semiconductores, aleaciones y polímeros. Las siliconas tienen diversas aplicaciones en la vida diaria: componentes de champús y acondicionadores de pelo, gel para pelo, desodorantes, barnices, selladores, impermeabilizantes, implantes debusto. Es un elemento esencial no tóxico, pero algunos silicatos (asbesto) son cancerígenos.</td>
</tr>
</tbody>
</table>
Características de los elementos representativos.

La principal característica de los elementos representativos es la tendencia a adquirir, en los últimos subníveles de energía, la configuración ns\(^2\) np\(^6\), correspondiente al gas noble más cercano (regla del octeto), ya sea compartiendo, aceptando o cediendo electrones.

Las familias de los subgrupos A, reciben nombres especiales:

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Familia</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA (1)</td>
<td>Metales alcalinos (formadores de bases o álcalis)</td>
</tr>
<tr>
<td>IIA (2)</td>
<td>Metales alcalinotérreos</td>
</tr>
<tr>
<td>IIIA (13)</td>
<td>Familia del boro o de los térreos</td>
</tr>
<tr>
<td>IVA (14)</td>
<td>Familia del carbono</td>
</tr>
<tr>
<td>VA (15)</td>
<td>Familia del nitrógeno</td>
</tr>
<tr>
<td>VIA (16)</td>
<td>Familia del oxígeno o calcógenos (formadores de minerales)</td>
</tr>
<tr>
<td>VIIA (17)</td>
<td>Halógenos (formadores de sales)</td>
</tr>
<tr>
<td>VIIIA (18)</td>
<td>Gases nobles o inertes</td>
</tr>
</tbody>
</table>

Tabla 3.5 Las familias de los elementos representativos.

Los elementos del grupo 1 (IA): Metales alcalinos

A los elementos de este grupo con excepción del hidrógeno, se les conoce como la familia de los *metales alcalinos* (litio, sodio, potasio, rubidio, cesio y francio).

En general presentan las siguientes propiedades físicas y químicas:

Propiedades físicas

- Son los metales más ligeros.
- Son blandos y lustrosos.
- Son sumamente maleables, se les puede cortar con cuchillo.
- Son de color blanco plateado, excepto el cesio que tiene un tono dorado.
- Sus sales son iónicas y muy solubles en agua.
- Se les obtiene industrialmente por electrólisis de sus sales fundidas.
- Sus espectros a la flama son: Li, carmesí; Na, amarillo; K, lila; Rb, rojo-violeta; Cs, azul.
- Sus puntos de fusión son muy bajos.
- Son sólidos excepto el Cs que puede ser líquido a temperatura ambiente en algunos lugares. Sólo se conocen isótopos artificiales del francio y el de vida más larga, Fr-223, tiene un tiempo de vida media de 21.8 min.
Propiedades químicas

Cada uno de ellos tiene una configuración electrónica externa, en su estado basal: ns1.

En general la química de los metales alcalinos está dominada por los compuestos que contienen iones positivos M$^+$, (Li$^+$, Na$^+$, K$^+$, ...)

Su número de oxidación es +1.

Son elementos muy reactivos, no existen libres en la naturaleza. Son difíciles de manejar con cierta seguridad, ya que reaccionan rápidamente con el oxígeno del aire o con el agua (algunos de estos metales reaccionan en forma explosiva con el agua), por ello, deben almacenarse en aceite, petróleo o queroseno.

Al reaccionar con el oxígeno forman óxidos básicos, al reaccionar con el agua forman hidróxidos, con los halógenos forman haluros y con los oxiácidos, oxisales.

Los elementos del grupo 2: Metales alcalinotérreos

A los elementos de este grupo se les conoce como la familia de los metales alcalinotérreos (berilio, magnesio, calcio, estroncio, bario y radio).

Los metales alcalinotérreos son un poco uniformes en cuanto a sus propiedades:

Propiedades físicas

- El berilio y el magnesio son metales grisáceos, mientras que los demás son de color plateados.
- Son maleables, dúctiles y bastante quebradizos.
- Son más densos y duros que los alcalinos.
- Sus espectros a la flama: Mg, blanco intenso, Ca, rojo anaranjado (pero verde claro al mirarlo a través de vidrio azul), Sr, carmesí (pero violeta a través de vidrio azul), Ba, verde manzana.
- Sus puntos de fusión son más altos que los de los metales alcalinos.

Fig. 3.44 Los espectros a la flama de los elementos del grupo IA.

Fig. 3.45 Los espectros a la flama de los elementos del grupo IIA.
Propiedades químicas

Cada uno de ellos tiene una configuración electrónica externa, en su estado basal: \(ns^2 \).

En general la química de los metales alcalinotérreos está dominada por los compuestos que contienen iones positivos \(M^{2+} \), \(\text{Be}^{2+}, \text{Mg}^{2+}, \text{Ca}^{2+}, \ldots \) debido a la pérdida de los dos electrones externos. Su número de oxidación en los compuestos es \(+2 \).

Sin embargo, la pérdida de sus electrones no es tan fácil, ya que son menos reactivos que los alcalinos. Reaccionan con el agua, pero lo hacen con mucha lentitud.

El \(\text{Ca}, \text{Sr} \) y \(\text{Ba} \) exhiben un comportamiento químico similar al de los metales alcalinos, el \(\text{Be} \) y \(\text{Mg} \) son menos reactivos al \(\text{O}_2 \) y al \(\text{H}_2\text{O} \). Reaccionan con el oxígeno del aire pero forman una capa de óxido que los protege de las reacciones adicionales.

Al calentarse, todos los metales alcalinotérreos se combinan con el \(\text{O}_2, \text{H}_2\text{O}, \text{N}_2, \text{S}_8 \) o halógenos, para formar óxidos, hidróxidos, nitruros, sulfuros y haluros.

El magnesio, cuando se mezcla con el aluminio, forma una aleación resistente y ligera, utilizada en la fabricación de piezas para automóviles, aviones o latas de refresco. El magnesio se usó bastante en fotografía, debido a la intensidad de su luz que emite al entrar en combustión.

El calcio se encuentra en la naturaleza formando carbonatos, \(\text{CaCO}_3 \), en piedra caliza, mármol y conchas marinas.

Las aguas duras contienen iones \(\text{Ca}^{2+} \) y \(\text{Mg}^{2+} \), que al depositarse en la tubería obstruyen el paso del agua, por ello, en el proceso de potabilización se les da un proceso de “ablandamiento”.

Las propiedades del \(\text{Ra} \) y sus compuestos pueden deducirse por extrapolación a partir de las de los elementos del grupo 2.

Los elementos del grupo 13: Los térreos

A los elementos de este grupo se les conoce como la familia de los térreos (boro, aluminio, galio, indio y talio).
Esta familia presenta una gran variedad en sus propiedades:

Propiedades físicas

- El boro es un metaloide, mientras que el aluminio, galio, indio y talio, son metales.
- El boro es de color gris, el aluminio, galio, indio y talio son de color plateado.
- El indio y el talio son metales blandos.
- Dentro de este grupo, la densidad y el carácter metálico aumenta con el número atómico.
Propiedades químicas

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Configuración electrónica</th>
<th>Estado de oxidación característico</th>
<th>Estado de oxidación M+</th>
<th>Propiedades químicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 B</td>
<td>(He) 2s² 2p¹</td>
<td>M3+</td>
<td></td>
<td>Cada uno de ellos tiene una configuración electrónica externa, en su estado basal: ns² np¹.</td>
</tr>
<tr>
<td>13 Al</td>
<td>(Ne) 3s² 3p¹</td>
<td></td>
<td></td>
<td>El estado de oxidación característico de los elementos del grupo 13 es el M³⁺, (B³⁺, Al³⁺, Ga³⁺, ...) debido a la pérdida de los tres electrones externos. Su número de oxidación en los compuestos es +3. Sin embargo, el estado de oxidación M⁺, también lo presentan el boro y el talio (B⁺, Tl⁺). Para el talio el estado de oxidación M⁺, es el estado más estable.</td>
</tr>
<tr>
<td>31 Ga</td>
<td>(Ar) 4s² 3d¹⁰ 4p¹</td>
<td></td>
<td></td>
<td>El boro forma óxidos ácidos, mientras que el resto forma óxidos básicos. El Al, Ga, In y Tl, reaccionan con los oxiácidos para formar oxisales y con los halógenos para formar haluros.</td>
</tr>
<tr>
<td>49 In</td>
<td>(Kr) 5s² 4d¹⁰ 5p¹</td>
<td></td>
<td></td>
<td>El aluminio es un metal reactivo pero forma una capa de óxido cuando se expone al aire, que lo protege de reacciones posteriores.</td>
</tr>
<tr>
<td>81 Tl</td>
<td>(Xe) 6s² 4f¹³ 5d¹⁰ 6p¹</td>
<td></td>
<td></td>
<td>El carbono es el más asombroso de todos los elementos, ya que es esencial para la vida. Se presenta en carbohidratos, proteínas, vitaminas y lípidos, entre otros.</td>
</tr>
</tbody>
</table>

En la familia de los téreos, el boro presenta propiedades químicas diferentes al resto del grupo. Es inerte en condiciones normales, excepto para el ataque por F₂. A temperaturas elevadas reacciona con la mayor parte de los no metales (excepto el H₂) y los metales.

El aluminio es un metal reactivo pero forma una capa de óxido cuando se expone al aire, que lo protege de reacciones posteriores.

Los elementos del grupo 14: La familia del carbono

Aunque existen grandes diferencias entre los elementos de este grupo, se les conoce como la familia del carbono (carbono, silicio, germanio, estaño y plomo).

Propiedades físicas

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Propiedades físicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 C</td>
<td>El carbono es un no metal, el silicio y el germanio son metáloides o semi-metales; el estaño y el plomo son metales.</td>
</tr>
<tr>
<td>14 Si</td>
<td>El Sn y el Pb son los únicos que en disolución acuosa forman cationes.</td>
</tr>
<tr>
<td>32 Ge</td>
<td>El Sn y el Pb son metales blandos.</td>
</tr>
<tr>
<td>50 Sn</td>
<td>El carbono presenta alótropos, como el grafito, diamante y carbono amorfo.</td>
</tr>
<tr>
<td>82 Pb</td>
<td>Todos son sólidos.</td>
</tr>
</tbody>
</table>

Propiedades químicas

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Configuración electrónica</th>
<th>Estado de oxidación característico</th>
<th>Propiedades químicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 C</td>
<td>(He) 2s² 2p²</td>
<td></td>
<td>Todos los miembros del grupo 14 exhiben estado de oxidación +4, pero el estado de oxidación +2 aumenta en estabilidad al bajar en el grupo.</td>
</tr>
<tr>
<td>14 Si</td>
<td>(Ne) 3s² 3p²</td>
<td></td>
<td>El carácter electropositivo y la reactividad de los elementos aumentan al bajar en el grupo. El silicio es mucho más reactivo que el carbono.</td>
</tr>
<tr>
<td>32 Ge</td>
<td>(Ar) 4s² 3d¹⁰ 4p²</td>
<td></td>
<td>El carbono es el más asombroso de todos los elementos, ya que es esencial para la vida. Se presenta en carbohidratos, proteínas, vitaminas y lípidos, entre otros.</td>
</tr>
<tr>
<td>50 Sn</td>
<td>(Kr) 5s² 4d¹⁰ 5p²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82 Pb</td>
<td>(Xe) 6s² 4f¹³ 5d¹⁰ 6p²</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
La propiedad química más importante del carbono es su capacidad de concatenarse entre sí, para formar una gran cantidad de compuestos de cadena abierta y cerrada.

Los elementos del grupo 15: La familia del nitrógeno

A los elementos de este grupo se les conoce como la familia del nitrógeno (nitrógeno, fósforo, arsénico, antimonio y bismuto).

Este grupo también presenta grandes diferencias en sus propiedades físicas y químicas.

Propiedades físicas

- El nitrógeno y el fósforo son no metales, el arsénico y el antimonio son metaloides y el bismuto es un metal.
- El nitrógeno es un gas y el resto son sólidos.

Propiedades químicas

Cada uno de ellos tiene en su estado basal, una configuración electrónica externa: \(nS^2 \, np^3 \).

La química de los dos primeros miembros es mucho más extensa que la del resto del grupo. El nitrógeno presenta todos los estados de oxidación desde +5 hasta -3. El fósforo presenta estados de oxidación de +1, +3, +5 y -3.

El arsénico, antimonio y bismuto presentan estados de oxidación de +3 y +5 respectivamente.

Podemos afirmar que casi todos los compuestos formados por los elementos del grupo 15, son de naturaleza covalente.

Por último cabría señalar que de todos los elementos de este grupo, el nitrógeno y el fósforo forman parte de todos los seres vivos.

Los elementos del grupo 16: La familia del oxígeno, calcógenos o anfígenos

A los miembros de este grupo se les conoce como la familia del oxígeno, aunque también se les conoce antiguamente como calcógenos o anfígenos (oxígeno, azufre, selenio, telurio y polonio).

El término calcógeno proviene del griego y significa formadores de minerales (como óxidos, sulfuros, sulfatos) y anfígenos formadores de ácidos y bases.
Este grupo de elementos presenta las siguientes propiedades:

Propiedades físicas

- En este grupo de elementos predomina más el carácter no metálico, el cual disminuye al aumentar el número atómico del elemento.
- El oxígeno, el azufre y el selenio son no metales, el telurio es metaloide y el polonio es un metal.
- El oxígeno es un gas y el resto son sólidos.
- El oxígeno es el elemento más electronegativo de esta familia.

Propiedades químicas

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>8</td>
<td>S</td>
<td>16</td>
</tr>
<tr>
<td>Se</td>
<td>34</td>
<td>Te</td>
<td>52</td>
</tr>
<tr>
<td>Po</td>
<td>84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cada uno de ellos tiene en su estado basal, una configuración electrónica externa: ns² np⁴.

El oxígeno, azufre y selenio tienen la tendencia a aceptar dos electrones para completar su última capa y formar iones 2⁻; óxido O²⁻, sulfuro S²⁻, selenuro Se²⁻. Los estados de oxidación más usuales son: +2, +4 y +6.

En general, la mayoría forma óxidos ácidos, como SO₂, SO₃, SeO, SeO₂, SeO₃, TeO, TeO₂, TeO₃.

El oxígeno existe principalmente como O₂ en la troposfera y como O₃ (ozono), en la estratosfera, allí absorbe los poderosos rayos ultravioleta del sol, que de otra forma, penetrarían hasta la superficie y dañarían a los organismos vivos. En la parte baja de la atmósfera, el ozono es un contaminante tóxico de olor picante. El oxígeno es un elemento muy reactivo y forma compuestos con cualquier otro elemento, excepto con los gases nobles, helio, neón y argón. Los óxidos de nitrógeno, azufre y carbono emitidos a la atmósfera provocan graves daños, presentándose fenómenos como: la lluvia ácida, efecto invernadero y la formación de esmog fotoquímico, destructor del ozono.

En contraste con el oxígeno, el polonio es un elemento radioactivo muy raro, que se degrada rápidamente en otros elementos, tiene un tiempo de vida media de 138 días.

Los elementos del grupo 17: La familia de los halógenos

A este grupo se le conoce como la familia de los halógenos (flúor, cloro, bromo, yodo y aстат).
Entre ellos existe una gran similitud en sus propiedades.

Propiedades físicas

- En este grupo de elementos predomina el carácter no metálico, el cual disminuye al aumentar el número atómico del elemento.
- El flúor, cloro, bromo y yodo, son no metales, mientras que el aстат es un metaloide.
- El F₂ es un gas de color amarillo pálido, el Cl₂ es un gas de color amarillo verdoso, el Br₂ es un líquido de color rojo oscuro, el I₂ es un sólido de color gris metálico.
- El flúor es el elemento más electronegativo de la tabla periódica.
- Existen como moléculas diatómicas (F₂, Cl₂, I₂, Br₂) en el estado elemental.

Propiedades químicas

<table>
<thead>
<tr>
<th></th>
<th>Cada uno de ellos tiene en su estado basal, una configuración electrónica externa: ns² np⁵.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 F</td>
<td>(He) 2s² 2p⁵</td>
</tr>
<tr>
<td>17 Cl</td>
<td>(Ne) 3s² 3p⁵</td>
</tr>
<tr>
<td>35 Br</td>
<td>(Ar) 4s² 3d¹⁰ 4p⁵</td>
</tr>
<tr>
<td>53 I</td>
<td>(Kr) 5s² 4d¹⁰ 5p⁵</td>
</tr>
<tr>
<td>85 At</td>
<td>(Xe) 6s² 4f¹⁴ 5d¹⁰ 6p⁶</td>
</tr>
</tbody>
</table>

El flúor, cloro, bromo y yodo tienen la tendencia a aceptar un electrón para completar su última capa y formar aniones ¹⁻; fluoruro, F⁻; cloruro, Cl⁻; bromuro, Br⁻. Los estados de oxidación posibles son: +1, +3, +5, +7 y -1, con excepción del flúor que sólo presenta -1.

Todos son químicamente reactivos, venenosos, corrosivos y agentes bactericidas. El flúor es el elemento más reativo, al igual que el oxígeno forma compuestos con cualquier otro elemento, excepto con el helio, neón y argón, es tan reactivivo en su forma elemental que debe almacenarse en recipientes especiales debido a que corroee al vidrio. Se utiliza en la síntesis de compuestos clorofluorocarbonados, conocidos como freones y utilizados como refrigerantes en aparatos de aire acondicionado y refrigeradores. También se utiliza en la fabricación de teflones.

El cloro se utiliza en la potabilización del agua, en la fabricación de blanqueadores, insecticidas plásticos medicamentos, entre otros.

El bromo es un líquido de color rojo oscuro de olor desagradable y venenoso que se utiliza en la síntesis de compuestos como el bromuro de plata (AgBr) y de potasio (KBr).

El yodo se utiliza en la fabricación de tintura de yodo (de uso medicinal), yoduro de sodio (NaI) utilizado en la sal yodatada.

El astato es un metaloide radiactivo sumamente inestable, tiene un tiempo de vida media de 7.5 horas.

Los elementos del grupo 18: La familia de los gases nobles

A este grupo se le conoce como la familia de los gases nobles o raros (helio, neón, argón, kriptón, xenón y radón).

En general presentan las siguientes propiedades:

Propiedades físicas

<table>
<thead>
<tr>
<th></th>
<th>1s²</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 He</td>
<td>(He) 2s² 2p⁶</td>
</tr>
<tr>
<td>10 Ne</td>
<td>(Ne) 3s² 3p⁶</td>
</tr>
<tr>
<td>18 Ar</td>
<td>(Ar) 4s² 3d¹⁰ 4p⁶</td>
</tr>
<tr>
<td>36 Kr</td>
<td>(Kr) 5s² 4d¹⁰ 5p⁶</td>
</tr>
<tr>
<td>54 Xe</td>
<td>(Xe) 6s² 4f¹⁴ 5d¹⁰ 6p⁶</td>
</tr>
<tr>
<td>86 Rn</td>
<td></td>
</tr>
</tbody>
</table>

- Todos son gases monoatómicos extremadamente estables.
- Sus radios atómicos son más pequeños.
- Presentan las mayores energías de ionización.
Propiedades químicas

Cada uno de ellos tiene en su estado basal, una configuración electrónica externa: \(ns^2 np^6 \). Esta configuración no es válida para el helio, que sólo tiene dos electrones en su capa o nivel de valencia.

Presentan un estado de oxidación de cero. Alguna vez se les conoció como gases inertes porque se creía que tales elementos no podían reaccionar con otros. Lo cual es cierto para el helio, neón y argón.

El helio es el más ligero de estos gases, por su baja densidad y nula reactividad se utiliza para inflar globos de juguete o regalo, aeroestáticos y neumáticos de grandes aviones. Se utiliza en la mezcla oxígeno-helio para tanques de buceo, debido a su baja solubilidad en la sangre.

El neón se utiliza en la fabricación de letreros luminosos, ya que al pasar una descarga eléctrica a baja presión produce una luz naranja rojiza.

Los fabricantes de partes automotrices están utilizando faros delanteros de xenón, los cuales son más brillantes que los faros normales.

Características de los elementos de transición

Los elementos correspondientes a los subgrupos B se intercalan en la parte central de la tabla periódica, exactamente entre los grupos IIA y IIIA, a partir del cuarto periodo. A ellos se les denomina elementos de transición, y constan de 10 columnas verticales que van del grupo IIIB (3) al IIB (12); el grupo VIIIB consta de una triada de columnas verticales (los grupos 8, 9 y 10).

Las estructuras electrónicas de los elementos de los subgrupos B, se caracterizan por ser muy especiales, ya que, además de poseer electrones de valencia, se encuentran llenando el subnivel “d”.

Se denominan metales de transición a aquellos elementos que poseen un subnivel \(d \) incompleto, o forman cationes con subniveles \(d \) incompletos.

De acuerdo a la definición anterior a los elementos del grupo 12, como el Zn, Cd y Hg no son elementos de transición, dado que éstos sólo utilizan los electrones de la capa externa para formar iones \(2^+ \). Ejemplos:

Al formar cationes los metales de transición pierden los primeros electrones \(s \) de la capa de valencia; después los electrones del subnivel \(d \) que se requieran para formar un ion en particular.
Dentro de los subgrupos B se consideran también a los lantánidos y actínidos, que se localizan en la parte inferior de la tabla periódica y que corresponden al grupo IIIB (3). Ellos son todavía más especiales, puesto que se encuentran llenando un subnivel más interno: el subnivel f. Estos elementos se colocan fuera y abajo de la tabla, sólo por cuestiones de estética. Si esto no se hiciera, la tabla periódica luciría tal como se observa en la figura 3.47.

No hay reglas sencillas, que nos permitan predecir la carga de un ion de un metal de transición, cada caso es particular.

Los elementos de transición presentan en general las siguientes características:
- Su configuración electrónica es ns² (n-1)d¹⁰
- Son muy duros y tenaces
- Son dúctiles y maleables
- Presentan elevada conductividad eléctrica y térmica
- Presentan elevados puntos de fusión
- Forman iones coloridos
- Pueden perder hasta 3 electrones para formar cationes monoatómicos
- Entre mayor sea el estado de oxidación de un elemento de transición, más covalentes serán sus compuestos.

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
<td>Tc</td>
<td>Ru</td>
<td>Rh</td>
<td>Pd</td>
<td>Ag</td>
<td>Cd</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>Ha</td>
<td>Ta</td>
<td>W</td>
<td>Re</td>
<td>Os</td>
<td>Ir</td>
<td>Pt</td>
<td>Au</td>
<td>Hg</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3.47 La tabla periódica larga.

Fig. 3.48 Disoluciones de elementos de transición.

Características de los elementos de transición interna

Se denominan metales de transición interna a los elementos que se encuentran llenando gradualmente el subnivel f. Al conjunto de elementos que se encuentran llenando el subnivel 4f, se les conoce como lantánidos, por la similitud de sus propiedades con las del lantano, también se les conocía como tierras raras. Así mismo, los actínidos se encuentran llenando el subnivel 5f y sus propiedades son semejantes al actínio.
Lantánidos

Esta familia está formada por los elementos Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb y Lu.

Sus principales características:

- Son metales blandos
- Son muy maleables
- Resistentes a la corrosión y al impacto
- Generalmente forman iones estables con carga 3+
- Forman iones coloridos

Los lantánidos han sido utilizados industrialmente mezclados con el hierro en la producción de piedras para encendedores. El europio se utiliza para producir el color rojo en los monitores de televisión. El samario se utiliza en la fabricación de imanes permanentes potentes. El neodimio, el holmio y el disprosio han permitido diseñar nuevas fuentes de rayos láser. El americio se utiliza en aparatos comerciales para detectar humo.

Actínidos

Esta familia está formada por los elementos thorio, protactinio, uranio, neptunio, plutonio, americio, curio, berquelio, californio, einstenio, fermio, mendelevicio, nobelio, laurencio.

El uranio y el plutonio son los elementos más conocidos. Se usan como fuentes de energía en reactores nucleares. La mayor parte de los actínidos no se encuentran en la naturaleza sino que han sido sintetizados en los laboratorios de física nuclear, a partir de otros elementos.

<table>
<thead>
<tr>
<th>Serie Lantánida</th>
<th>La*</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Pm</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serie Actínida</td>
<td>Ac*</td>
<td>Th</td>
<td>Pa</td>
<td>U</td>
<td>Np</td>
<td>Pu</td>
<td>Am</td>
<td>Cm</td>
<td>Bk</td>
<td>Cf</td>
<td>Es</td>
<td>Fm</td>
<td>Md</td>
<td>No</td>
<td>Lr</td>
</tr>
</tbody>
</table>

Fig. 3.51 Los elementos de transición interna: lantánidos y actínidos.
3. Procesamiento de la información

Actividad 3.43

En forma colaborativa elabora un mapa conceptual que rescate en gran medida los contenidos acerca de los metales, no metales y metaloides, así como la importancia biológica, económica y social de algunos de estos elementos.
4. Aplicación de la información

Actividad 3.44

En colaborativa resuelva el siguiente crucigrama de metales, no metales y metaloides.

Metales, no metales y metaloides

Horizontales

2. Es el único metal líquido.

5. Elemento metaloide más abundante en la corteza terrestre.

8. Tipo de elementos que se ubican a la izquierda y al centro de la tabla periódica.

9. En condiciones normales es el único no metal líquido.

10. Los elementos de este grupo generalmente existen como moléculas diatómicas en su estado elemental, son muy reactivos a temperatura ambiente.

12. Halógeno utilizado en la potabilización del agua para evitar enfermedades como el cólera.

15. El plutonio y el americio pertenecen a la familia de los...

16. Elemento alcalino del cual se predice que puede ser líquido.

17. Nombre que se utiliza para designar a los metales de los subgrupos B.

18. Elemento metálico cuya temperatura de fusión es tan baja que se puede fundir en la mano.

19. Elemento más abundante en el universo.
Verticales

1. Metaolide del grupo 13 utilizado frecuentemente como veneno suave para cucarachas y hormigas.

3. En la tabla periódica los periodos son ¿filas o columnas?

4. Es uno de los metaloides más venenosos, el cual se cree fue utilizado para envenenar a Napoleón Bonaparte.

6. El diamante y el grafito son algunas de las formas alotrópicas del...

7. Estos gases tienen los subniveles s y p llenos de electrones.

11. Metal más abundante en la corteza terrestre.

13. Nombre que se utiliza para designar a la familia de la primera serie de elementos de transición interna.

14. En la tabla periódica, al conjunto de elementos que tienen sus electrones en el mismo nivel de energía se le denomina.
Actividad 3.45

Analiza cada una de las preguntas iniciales de falso-verdadero y fundamenta tu respuesta.

<table>
<thead>
<tr>
<th>Pregunta</th>
<th>Fundamentación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. La tabla periódica permite predecir que el Francio en cantidades suficientes será líquido.</td>
<td></td>
</tr>
<tr>
<td>2. El oxígeno y el nitrógeno son dos gases nobles de gran importancia.</td>
<td></td>
</tr>
<tr>
<td>3. Los metales se ubican a la izquierda y al centro de la tabla periódica.</td>
<td></td>
</tr>
<tr>
<td>4. Las mejores fuentes de hierro son las vísceras, el hígado, los quelites, acelgas y espinacas.</td>
<td></td>
</tr>
<tr>
<td>5. La presencia de fosfatos en ríos y lagos provoca el crecimiento excesivo de plantas acuáticas.</td>
<td></td>
</tr>
<tr>
<td>6. El hierro es el constituyente esencial de la clorofila en las plantas verdes.</td>
<td></td>
</tr>
<tr>
<td>7. El mercurio es el único elemento líquido.</td>
<td></td>
</tr>
<tr>
<td>8. Los metaloides se ubican arriba y abajo de la línea diagonal que divide a los metales de los no metales.</td>
<td></td>
</tr>
<tr>
<td>9. La deficiencia de yodo es la causa del bocio en los humanos.</td>
<td></td>
</tr>
<tr>
<td>10. Los no metales son maleables, dúctiles y buenos conductores del calor y la electricidad.</td>
<td></td>
</tr>
</tbody>
</table>
La siguiente rúbrica puede servir para llevar a cabo la coevaluación entre los equipos al realizar la exposición de un tema.

Rúbrica para evaluar la exposición de cada equipo

Nombre del equipo: __

<table>
<thead>
<tr>
<th>Integrantes</th>
<th>Calificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aspectos</th>
<th>Criterios</th>
<th>Indicadores</th>
<th>MB (20)</th>
<th>B (15)</th>
<th>S (10)</th>
<th>INS (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición</td>
<td>Dominio del tema</td>
<td>Se expone el tema en forma clara y eficiente.</td>
<td>Expone el tema con claridad y no se recurre a la lectura textual</td>
<td>Se expone el tema con claridad pero se recurre en ocasiones a las notas escritas</td>
<td>Se observa poco dominio del tema y se recurre frecuentemente a las notas escritas</td>
<td>No se observa dominio del tema.</td>
</tr>
<tr>
<td>Exposición</td>
<td>Organización de la exposición</td>
<td>Los expositores muestran organización.</td>
<td>Se muestra excelente organización</td>
<td>Se muestra buena organización</td>
<td>Se muestra cierta desorganización</td>
<td>Se muestra una completa desorganización</td>
</tr>
</tbody>
</table>

TOTAL
Las propiedades periódicas

- Describe las propiedades atómicas y moleculares como: masa atómica, número atómico, tamaño atómico, potencial de ionización, afinidad electrónica y electronegatividad.
- Interpreta las tendencias periódicas de algunas propiedades atómicas o moleculares, como el tamaño atómico, potencial de ionización, afinidad electrónica y electronegatividad.
- Reflexiona sobre el efecto de las propiedades periódicas en la actividad química de los elementos en la vida cotidiana.

1. Problematización

¿Qué relación existe entre la configuración electrónica y la variación periódica de las propiedades de un elemento?

__
__

Actividad 3.46

Explora tus conocimientos previos, dando respuesta a las siguientes aseveraciones como falsas o verdaderas.

1. Las propiedades periódicas se denominan así porque varían en forma regular a lo largo de un periodo o de un grupo en la TP. **F V**

2. Al recorrer un grupo de arriba hacia abajo el radio atómico disminuye. **F V**

3. La energía necesaria para eliminar un electrón de un átomo neutro en estado gaseoso y formar un ion positivo se denomina energía de ionización. **F V**

4. Al eliminar un segundo electrón de un átomo, siempre se requiere menor energía. **F V**

5. La tabla periódica es una herramienta que nos permite predecir cómo varían las propiedades de los elementos a través de un grupo o periodo. **F V**

6. Se denomina afinidad electrónica a la facilidad con la que un átomo en estado gaseoso gana un electrón. **F V**

7. La Afinidad electrónica será mayor para los elementos metálicos que no metálicos. **F V**

8. La electronegatividad es una propiedad que se manifiesta sólo cuando los átomos se encuentran unidos. **F V**

9. El carácter metálico aumenta hacia abajo y hacia la izquierda en la TP. **F V**

10. El elemento con número 118 se puede predecir que tendrá propiedades similares a los gases nobles. **F V**
2. Adquisición y organización de la información

Actividad 3.47

En forma individual lee acerca de las propiedades periódicas y elabora una síntesis de la misma.

Introducción

Dimitri Ivanovich Mendeleiev en 1869 presentó un ordenamiento de los elementos de acuerdo con sus masas atómicas (antes pesos atómicos) y encontró cierta relación con el comportamiento químico. Esto le permitió establecer la ley periódica que dice: las propiedades físicas y químicas de los elementos varían periódicamente al aumentar su masa atómica.

A pesar del gran éxito de su planteamiento, la tabla mostraba algunas inconsistencias, como por ejemplo, la masa atómica del argón (39.95 uma) es mayor que la del potasio (39.10 uma), pero se ordenaba primero al argón seguido del potasio. Lo mismo sucedía con el telurio (127.6 uma) y el yodo (126.9 uma), pero se ordenaba primero al telurio seguido del yodo.

El mismo Mendeleiev se había dado cuenta de tal inconsistencia y había recurrido a las propiedades químicas de los elementos para su ordenamiento, pues nadie ubicaría al argón en el grupo de los alcalinos y al potasio entre los gases nobles.

En 1913, Henry Moseley descubrió cierta correlación entre el número atómico (número de protones) y la variación en las propiedades de los elementos, pero además, que este número aumenta en el mismo orden que la masa atómica. Su descubrimiento permitió eliminar las inconsistencias del trabajo de Mendeleiev, así, el número de orden del argón es 18 y el del potasio 19, asimismo el del telurio es 52 y el del yodo 53.

 Esto llevó a Moseley a modificar la ley periódica, enunciándola como sigue: las propiedades físicas y químicas de los elementos varían periódicamente al aumentar su número atómico.

El número atómico indica el número de electrones de un átomo y la manera cómo se distribuyen ayuda a explicar las diferencias entre las propiedades de los elementos.

Propiedades periódicas

Se denominan propiedades periódicas a aquellas propiedades que varían en forma regular a lo largo de un periodo o de un grupo. Algunas de estas propiedades son las siguientes: tamaño atómico, potencial de ionización, afinidad electrónica y electronegatividad.

Tamaño atómico

El tamaño atómico se puede definir como la distancia que hay del núcleo de un átomo hacia su electrón más lejano.

Este tamaño está determinado por la fuerza con la que el núcleo atómico es capaz de atraer hacia sí los electrones más externos.
Sin embargo, desde el modelo de la mecánica cuántica, el átomo no tiene límites claramente definidos que determinen su tamaño. Por tanto, no tiene sentido hablar de un radio bien definido para un átomo aislado.

Ahora bien, el tamaño de un átomo puede variar dependiendo del entorno que lo rodea, es decir, de los átomos a los cuáles está unido. Así, el tamaño atómico varía dependiendo del tipo de enlace químico presente.

Radio covalente

Cuando se unen dos átomos del mismo elemento, el radio atómico se define como la mitad de la distancia entre los dos núcleos.

Ejemplos:

La distancia internuclear en el enlace Br-Br en la molécula Br₂, es 228.6 pm. Así, podemos decir que el radio atómico del Br es de 114.3 pm.

La distancia internuclear en el enlace C-C, del diamante es 154 pm. Así, podemos decir que el radio atómico del C es de 77 pm.

Si el carbono y el bromo se unen, C-Br, la distancia de enlace entre ellos debe ser:

\[114\text{pm} + 77\text{pm} = 191\text{pm} \]

Los datos obtenidos de manera indirecta, no difieren mucho de los datos obtenidos experimentalmente. Al graficar los radios atómicos con respecto al número atómico, se han encontrado las siguientes tendencias periódicas.

1. Dentro de un grupo de la tabla periódica, el radio atómico aumenta de arriba hacia abajo, debido a que aumentan los niveles de energía y por consiguiente la distancia del núcleo hacia los electrones externos.

2. En un periodo, el radio atómico disminuye de izquierda a derecha. Esto se debe a que al recorrer un periodo se mantiene constante el número de electrones internos, mientras que el número de electrones externos aumenta y provoca que se incremente la carga nuclear efectiva y disminuya el tamaño.

3. El tamaño de un catión, o ion positivo, es menor que el del átomo neutro correspondiente. Esto se debe a que aumenta la carga positiva sobre el núcleo, y los electrones son más fuertemente atraídos.
Ejemplos:

\[r_{Na} = 191 \text{ pm} \quad \text{pero} \quad r_{Na^+} = 116 \text{ pm} \]

4. El tamaño de un anión, o ion negativo, es mayor que el del átomo neutro correspondiente. Esto se debe a que aumenta la repulsión entre los electrones de la capa externa y el electrón extra.

\[r_{F} = 71 \text{ pm} \quad \text{pero} \quad r_{F^-} = 119 \text{ pm} \]

Tabla 3.6 Muestra la variación del tamaño atómico en la tabla periódica.
Energía de Ionización

Otra propiedad periódica muy importante para entender las propiedades químicas de los elementos es la energía de ionización, la cual se define como:

La energía necesaria para eliminar un electrón de un átomo neutro en estado gaseoso y formar un ion positivo.

Al adicionar energía al átomo, provoca que el electrón más externo se mueva hacia niveles de energía más alejados del núcleo. Es posible que este electrón por encontrarse débilmente unido al átomo, sea el primero en eliminarse, formándose así un catión o ion positivo.

<table>
<thead>
<tr>
<th>átomo</th>
<th>energía de ionización</th>
<th>catión+</th>
<th>electrón</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>8.24 x 10</td>
<td>Na⁺</td>
<td>1 e⁻</td>
</tr>
</tbody>
</table>

La facilidad con la cual los átomos pierden electrones, coincide con las propiedades químicas de los elementos. Al graficar las primeras energías de ionización de los elementos con respecto al número atómico, se han encontrado las siguientes tendencias periódicas.

1. Al recorrer de arriba hacia abajo un grupo de la tabla periódica, la energía de ionización disminuye. Esto se explica, debido a que el átomo aumenta de tamaño y por consiguiente, la distancia del núcleo hacia los electrones externos aumenta, provocando la fácil eliminación del electrón.

2. Al recorrer un periodo de izquierda a derecha la energía de ionización aumenta. Esto se explica por el aumento de carga nuclear efectiva que provoca que el tamaño disminuya haciendo más difícil eliminar un electrón.

Fig. 3.53 Energías de ionización(I₁) en KJ/mol

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>I₁</th>
<th>Símbolo</th>
<th>I₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>520</td>
<td>Li</td>
<td>520</td>
</tr>
<tr>
<td>Be</td>
<td>899</td>
<td>Na</td>
<td>496</td>
</tr>
<tr>
<td>B</td>
<td>801</td>
<td>K</td>
<td>419</td>
</tr>
<tr>
<td>C</td>
<td>086</td>
<td>Rb</td>
<td>403</td>
</tr>
<tr>
<td>N</td>
<td>1402</td>
<td>Cs</td>
<td>376</td>
</tr>
<tr>
<td>O</td>
<td>1134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1681</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ne</td>
<td>2081</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 joule = 0.23901 calorías
1 caloria = 4.184 joules

¿Sabías que...

la carga nuclear efectiva es la carga que realmente experimenta un electrón dado, en un átomo polielectrónico, la cual es modificada por la presencia de los electrones internos, ya que estos reducen la atracción electrostática entre los protones del núcleo y los electrones externos, es decir sirven de apantallamiento.
Afinidad electrónica

La afinidad electrónica se define como la energía que se libera o se absorbe cuando un átomo neutro en estado gaseoso gana un electrón para formar un ion negativo (anión).

\[
\text{Cl}_\text{(g)} + e^- \rightarrow \text{Cl}^- + AE = -348.52 \text{ kJ/mol}
\]

Tanto el potencial de ionización como la afinidad electrónica se ven afectadas por el tamaño atómico.

Entre mayor sea la afinidad electrónica de un elemento, mayor será su tendencia a ganar electrones, así:

Los no metales, al tener alta afinidad electrónica y alto potencial de ionización, su tendencia es a ganar electrones. Así mismo, los metales al presentar baja afinidad electrónica y bajo potencial de ionización, su tendencia es a perder electrones.

Al graficar las afinidades electrónicas de los elementos con respecto al número atómico, se han encontrado las siguientes tendencias periódicas.

1. Al recorrer de arriba hacia abajo un grupo de la tabla periódica, la afinidad electrónica disminuye. Esto se explica, debido a que el átomo aumenta de tamaño y por consiguiente, la distancia del núcleo hacia los electrones externos aumenta, provocando la fácil eliminación del electrón y dificultando la ganancia de electrones.

2. Al recorrer un periodo de izquierda a derecha la afinidad electrónica aumenta. Esto se explica, por el aumento de carga nuclear efectiva que provoca que el tamaño disminuya, haciendo más difícil eliminar un electrón y facilitando la ganancia de electrones.

Fig. 3.55 Variación de la afinidad electrónica en la tabla periódica.
Electronegatividad

La electronegatividad se define como la medida de la capacidad que tiene un átomo en una molécula, para atraer hacia sí los electrones del enlace.

La electronegatividad al igual que la afinidad electrónica, aumenta de izquierda a derecha y de abajo hacia arriba. De forma tal, que el elemento más electronegativo es el flúor y el menos electronegativo es el francio.

La electronegatividad es una propiedad molecular que se manifiesta cuando los átomos se encuentran unidos y es importante para predecir el tipo de enlace formado, por ello, la abordaremos en la siguiente unidad.

Los átomos de los elementos más electronegativos son los que ejercen mayor atracción sobre los electrones compartidos en un enlace covalente.

Linus Pauling fue el primero en idear una escala numérica de electronegatividades y asignó un valor de 4.0 al flúor como el elemento más electronegativo.

Fig. 3.56 Variación de la electronegatividad en la tabla periódica.
3. Procesamiento de la información

Actividad 3.48

En forma colaborativa elabora un mapa conceptual que resalte en gran medida los contenidos acerca de las propiedades periódicas.
4. Aplicación de la información

Actividad 3.49

En forma individual o colaborativa resuelva los siguientes cuestionamientos.

1. ¿Qué propiedades periódicas aumentan al recorrer un grupo de arriba hacia abajo en la tabla periódica?

a) El carácter metálico y la electronegatividad
b) El potencial de Ionización y el carácter metálico
c) El carácter no metálico y el potencial de ionización
d) La electronegatividad y la afinidad electrónica
e) Ninguna de las anteriores

2. ¿Qué propiedades periódicas aumentan al desplazarnos en un período de izquierda a derecha en la tabla periódica?

a) La electronegatividad y el tamaño atómico
b) El radio atómico y el radio iónico
c) El carácter metálico y la afinidad electrónica
d) Potencial de ionización y electronegatividad
e) Ninguna de las anteriores

3. En la tabla periódica, el tamaño atómico tiende a aumentar hacia la:

a) Derecha y hacia arriba b) Derecha y hacia abajo

3. En la tabla periódica, el tamaño atómico tiende a aumentar hacia la:

a) Derecha y hacia arriba b) Derecha y hacia abajo

c) Izquierda y hacia arriba d) Izquierda y hacia abajo

4. Triada de elementos con menor energía de ionización:

a) Ne, Cl, F b) S, C, O c) Li, Na, K d) He, Ne, Ar

5. El tamaño de los átomos aumenta cuando:

a) Se incrementa el número de período b) Disminuye el número de período
c) Se incrementa el número de grupo d) Disminuye el número de bloque
e) Ninguna de las anteriores

6. El radio atómico es la distancia que hay del núcleo de un átomo a su electrón más lejano. ¿Cómo varía esta propiedad atómica en los elementos de la tabla periódica?

a) Disminuye conforme nos desplazamos de izquierda a derecha a lo largo de un período
b) Aumenta conforme nos desplazamos de arriba hacia abajo a lo largo de un grupo
c) Aumenta conforme nos desplazamos de derecha a izquierda a lo largo de un período
d) todos son correctos
7. La energía de ionización del elemento yodo con respecto al calcio, es:
 a) Mayor b) Menor c) Igual d) Proporcional

8. ¿Cuál de los siguientes elementos tiene la más alta afinidad electrónica?
 a) Cl b) Br c) F d) I

9. ¿Cuál elemento tiene la primera energía de ionización más baja?
 a) Na b) Cs c) Li d) K

10. ¿Qué familia de elementos en la tabla periódica tienen los mayores tamaños atómicos?
 a) metales alcalinos b) gases nobles c) halógenos d) calcógenos

11. ¿Qué familia de elementos en la tabla periódica tienen las mayores electronegatividades?
 a) metales alcalinos b) gases nobles c) halógenos d) calcógenos

12. ¿Qué elemento de la tabla periódica tiene el más alto valor de electronegatividad?
 a) P b) S c) Cl d) F

13. ¿Qué familia de elementos tiene las primeras energías de ionización más altas?
 a) metales alcalinos b) gases nobles c) halógenos d) calcógenos

14. Con la información que ya posees acerca del tamaño atómico, compara el tamaño de un átomo de oxígeno, con el del ion óxido, O²⁻:
 a) será menor b) será mayor c) será igual d) ninguna es correcta
5. Autoevaluación

Actividad 3.50

Analiza cada una de las siguientes preguntas de falso-verdadero y fundamenta tu respuesta.

<table>
<thead>
<tr>
<th>Pregunta</th>
<th>Fundamentación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Las propiedades periódicas se denominan así porque varían en forma regular a lo largo de un periodo o de un grupo en la TP.</td>
<td></td>
</tr>
<tr>
<td>2. Al recorrer un grupo de arriba hacia abajo el radio atómico disminuye.</td>
<td></td>
</tr>
<tr>
<td>3. La energía necesaria para eliminar un electrón de un átomo neutro en estado gaseoso y formar un ion positivo se denomina energía de ionización.</td>
<td></td>
</tr>
<tr>
<td>4. Al eliminar un segundo electrón de un átomo, siempre se requiere menor energía.</td>
<td></td>
</tr>
<tr>
<td>5. La tabla periódica es una herramienta que nos permite predecir cómo varían las propiedades de los elementos a través de un grupo o periodo.</td>
<td></td>
</tr>
<tr>
<td>6. Se denomina afinidad electrónica a la facilidad con la que un átomo en estado gaseoso gana un electrón.</td>
<td></td>
</tr>
<tr>
<td>7. La afinidad electrónica será mayor para los elementos metálicos que no metálicos.</td>
<td></td>
</tr>
<tr>
<td>8. La electronegatividad es una propiedad que se manifiesta sólo cuando los átomos se encuentran unidos.</td>
<td></td>
</tr>
<tr>
<td>9. El carácter metálico aumenta hacia abajo y hacia la izquierda en la tabla periódica.</td>
<td></td>
</tr>
<tr>
<td>10. El elemento con número 118 se puede predecir que tendrá propiedades similares a los gases nobles.</td>
<td></td>
</tr>
</tbody>
</table>
Coevaluación

La siguiente rúbrica puede servir para evaluar el mapa conceptual.

Rúbrica para evaluar la exposición de cada equipo

Nombre del equipo: __

<table>
<thead>
<tr>
<th>Integrantes</th>
<th>Calificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aspectos</th>
<th>Criterios</th>
<th>Indicadores</th>
<th>MB (20)</th>
<th>B (15)</th>
<th>S (10)</th>
<th>INS (5)</th>
<th>Asignación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentación</td>
<td>Estructura</td>
<td>Presenta en forma clara y precisa su producto.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MB (20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Presenta todos los elementos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No presenta al menos un elemento.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No estructura de manera adecuada su trabajo.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dominio conceptual</td>
<td>Manejo conceptual</td>
<td>Utiliza los conceptos sobre propiedades periódicas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B (15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Utiliza los principales conceptos sobre las propiedades periódicas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Utiliza la mayoría de los conceptos sobre las propiedades periódicas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No utiliza algunos de los principales conceptos sobre las propiedades periódicas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INS (5)</td>
</tr>
<tr>
<td>Organización</td>
<td>Jerarquización</td>
<td>Integra y jerarquiza en forma clara los conceptos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S (10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integra pero no jerarquiza los conceptos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muestra cierta organización.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Se muestra una completa desorganización.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uso de conectores</td>
<td></td>
<td>Utiliza conectores y/o palabras claves que permiten relacionar los conceptos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MB (20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Utiliza algunos conectores y/o palabras claves entre los conceptos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Utiliza sólo algunos conectores.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>El equipo no utiliza conectores, ni palabras claves.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interacción</td>
<td>Participación del grupo.</td>
<td>El equipo motiva y propicia la participación del grupo.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S (10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>El equipo logra la participación activa y motivada del grupo.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>El equipo logra poca participación, pero no motiva al grupo.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>El equipo logra hacer participar sólo a algunos miembros del grupo.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>El equipo no logra motivar, ni hacer participar al grupo.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Elabora tu proyecto: procesa la información.

- Define su proyecto de investigación.
- Procesa la información y elabora su proyecto de investigación.
- Se asume como una persona responsable y ordenada al continuar la realización de su anteproyecto de investigación.

Con el avance del curso, debes tener claro tu proyecto de investigación, se supone que ya has recabado la información necesaria, y que te dispones a procesarla, a fin de realizar el análisis de la misma y hacer las conclusiones de tu trabajo. Si hasta este momento no has realizado actividad alguna sobre tu proyecto, sentimos decirte que queda poco tiempo y que tu actuación no muestra la seriedad y la responsabilidad que se requiere al realizar un trabajo de este tipo. Si eres de los que ya casi terminan el trabajo, felicidades por ser una persona responsable y ordenada.

Fig.3.57 Elaborando el proyecto de manera colaborativa.
ACTIVIDAD EXPERIMENTAL 6
La luminiscencia del cascarón de huevo

Competencia a desarrollar:

- Explica el fenómeno de la fluorescencia que se manifiesta en algunas sustancias al ser excitadas mediante la corriente eléctrica.
- Identifica cationes metálicos presentes en una disolución a través del ensayo a la flama.

Actividades previas

Investigar en diferentes fuentes, los siguientes fenómenos: luminiscencia, fluorescencia, fosforescencia y electrólisis.

Lee con atención el siguiente cuento:
¡Un huevo, muy huevo!
En la tierra de huevolandia se lleva a cabo anualmente un concurso llamado ¡Qué huevo! Cada participante explica a qué se dedica y cómo beneficia a la comunidad.
Por ejemplo: el huevo de carnaval lleno de confeti, y pintado con una diversidad de colores, se identificó como el más alegre y divertido, ya que es el preferido por los jóvenes que les hacen bromas a sus compañeros.

El siguiente participante es el huevo de aveSTRUZ, caracterizado por ser el más grande y elegante, según manifiestan muchos cuyas casas son adornadas por él.
El huevo de pascua con un decorado especial. Era el más adornado y es buscado por la mayoría de los niños en la pascua.
En cuanto al huevo ranchero, nadie dudó que fuera él, pues portaba sombrero y botas. Entró haciendo alarde de su importancia en la mesa de cada hogar y con voz a cuello gritaba: “¡Yo soy un huevo muy huevo, lo digo yo!” Con esa actitud, empuja al huevo de aveSTRUZ que no se movió de su posición, pero ocasionó una fractura en el huevo ranchero, cuyo contenido se derramó ocasionando que resbalaran todos, destruyendo así la escenografía.

Todos se levantaron lamentando el incidente, excepto el huevo ranchero que al caer quedó inconsciente, inmediatamente un médico que estaba en el evento lo atendió. Primero trató de restituir el volumen perdido, al administrarle una solución electrolítica y al no reaccionar le aplicó urgentemente un electroshock, emitiendo colores que maravillaron a todo el que lo observaba, surgiendo entre los presentes algunas preguntas.

Información

La cáscara del huevo es rígida y dura, pero frágil; está formada por una capa calcárea (CaCO₃) y una cutícula. El conjunto cáscara-cutícula es permeable a los gases, permitiendo el intercambio gaseoso entre el embrión y la atmósfera externa. Se puede afirmar que el huevo es un alimento con un alto contenido nutricional, rico en proteínas, vitaminas y minerales. Sin embargo, para los propósitos de la presente actividad esencialmente interesa la porción no comestible del huevo: la cáscara.
El peso promedio de la cáscara del huevo de gallina es de 5.8 g, de los cuales el 94% en peso corresponde a carbonato de calcio (CaCO₃), conocido también como calcita. Esta es una sustancia que puede presentar el fenómeno de fluorescencia.

<table>
<thead>
<tr>
<th>Materiales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alambre de cobre</td>
</tr>
<tr>
<td>Alcohol de caña</td>
</tr>
<tr>
<td>Clavija</td>
</tr>
<tr>
<td>Agua destilada</td>
</tr>
<tr>
<td>Cinta aislante</td>
</tr>
<tr>
<td>Sal de cocina</td>
</tr>
<tr>
<td>Agujas de canevá</td>
</tr>
<tr>
<td>Huevos de cáscara gruesa</td>
</tr>
<tr>
<td>Un trozo de lija</td>
</tr>
<tr>
<td>2 vasos de plástico desechables de 20 mL</td>
</tr>
<tr>
<td>Tijeras</td>
</tr>
<tr>
<td>Una caja de cartón o madera color negro</td>
</tr>
<tr>
<td>Una cartera contenedora de huevo</td>
</tr>
<tr>
<td>Algodón</td>
</tr>
<tr>
<td>Jeringas de 20 mL</td>
</tr>
<tr>
<td>2 agujas #14 de venoclisión</td>
</tr>
</tbody>
</table>

Preguntas problematizadoras

El profesor realizará con la ayuda de algunos estudiantes el experimento que se describe abajo. Plantea una hipótesis acerca del color que se apreciará en la cáscara de huevo. Si cambiáramos la disolución electrolítica con una sal diferente, por ejemplo, yoduro de potasio o sulfato de cobre, ¿qué esperas que suceda?

Experimento

1. Se conecta la clavija en un extremo del alambre de cobre, en el extremo opuesto se adaptan las agujas de canevá una en cada filamento y se cubren con cinta aislante. Estas agujas funcionan como electrodos.
2. De la cartera de huevo se recortan los soportes individuales y se utilizan para sostener los huevos que se usarán en la experimentación.
3. En un vaso de plástico se prepara una solución de sal en agua al 10% en peso.
4. Se seleccionan los huevos cuidando que no tengan fracturas y de preferencia que la cáscara se secan y se limpian con un algodón con alcohol.
5. Se procede a perforar los huevos cuidadosamente usando primero la aguja delgada y después la de canevá.
6. A los huevos se les extrae su contenido (la clara y la yema) succionando con una jeringa con cuidado. Luego se enjuaga el cascarón procurando no dejar ningún residuo del contenido de este.
7. Ya que el cascarón quede totalmente limpio se inyectan 40 mL de la solución de sal de cocina en agua al 10%.
8. Se coloca el huevo con el electrolito en el soporte individual obtenido de la cartera de huevos y se le introducen los electrodos procurando que estos no hagan contacto entre sí.
9. Finalmente se conecta a la corriente eléctrica de (110 Voltios). Se recomienda un espacio oscura para observar la luminiscencia en la cáscara de huevo.
Cascarones con electrolito conectados en un circuito en serie. Sin embargo, se puede utilizar un sólo cascarón en el circuito eléctrico.

Observaciones

4. Registro de datos

Resultados

¿Se confirmaron tus hipótesis? Argumenta tus respuestas.

¿Qué color se observó al utilizar las diferentes disoluciones salinas? ¿Qué átomo es el responsable de dicho color?

¿Cómo influye la electricidad en la manifiestación de este fenómeno?

¿Cómo explicar este fenómeno de luminiscencia desde el modelo de Bohr?

Conclusiones
ACTIVIDAD EXPERIMENTAL 7
Espectros a la flama

Competencia a desarrollar:

- Identifica cationes metálicos presentes en una disolución a través del ensayo a la flama.
- Ubica a los cationes identificados a la flama en la tabla periódica.

Actividades previas

Investigar en diferentes fuentes, lo relacionado con espectros atómicos y los colores a la flama de diferentes cationes metálicos.

Preguntas problematizadoras

Un grupo de estudiantes preparó diferentes disoluciones de cloruro, de cobre, de estroncio, de bario, de calcio, de potasio, de sodio y litio. Por descuido, no fueron etiquetados, ayuda a identificarlos mediante la prueba a la flama. Elabora tu hipótesis sobre los posibles cationes que le fueron asignados al equipo.

1. Hipótesis de trabajo

Diseña el experimento y dibuja el montaje.

2. Diseño experimental

¿Qué materiales y sustancias utilizarás para llevar a cabo el experimento?

3. Materiales y sustancias
Observaciones y registro de datos.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Color a la flama</th>
<th>Catión (símbolo)</th>
<th>Grupo de la TP en la que se ubica</th>
<th>Número atómico</th>
<th>Nombre de la disolución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disolución 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disolución 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disolución 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disolución 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disolución 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disolución 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disolución 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resultados.

¿Se confirmaron tus hipótesis? Argumenta tu respuesta.

¿Cuáles de los compuestos utilizados en la preparación de las disoluciones, podría ser utilizado en los fuegos artificiales?

Si el cloruro de estroncio produce una flama roja, ¿qué color se esperaría que produjera el sulfato de estroncio?

¿Qué problemas encontraste en el desarrollo de tu experimento? ¿Cómo los resolviste?

En la tabla periódica que se muestra a continuación, anota los grupos, períodos y ubica a cada uno de los cationes metálicos identificados en las disoluciones.

6. Conclusiones
Las sustancias: sus enlaces, nomenclatura y aplicaciones en la vida cotidiana
Competencia de unidad

Explica la forma como se unen e interaccionan los átomos, moléculas e iones al dar lugar a las sustancias inorgánicas, mediante el uso de los diferentes modelos de enlace, la simbología y la nomenclatura apropiada para escribir sus fórmulas y nombres.

Los modelos de enlace químico: ¿cómo se unen los átomos, iones y moléculas?

- Describe las diferentes formas como se unen los átomos, iones y moléculas
- Explica la formación de enlaces entre los átomos, iones y moléculas mediante el uso de modelos de enlace.
- Valora la importancia del enlace químico en la comprensión de la forma cómo se encuentra estructurada la materia viva e inanimada.

1. Problematización

¿Cómo se unen entre sí los átomos e iones de los diferentes elementos?

__
__
__
__

Fig. 4.1 La relación macroscópica-submicroscópica.
Actividad 4.1

Explora tus conocimientos previos, dando respuesta a las siguientes aseveraciones como falsas o verdaderas.

<table>
<thead>
<tr>
<th>Núm.</th>
<th>Aseveración</th>
<th>Respuesta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>La fórmula NaCl representa a una molécula de cloruro de sodio.</td>
<td>F</td>
</tr>
<tr>
<td>2.</td>
<td>Para los químicos, el término reducción significa ganancia y no disminución.</td>
<td>F</td>
</tr>
<tr>
<td>3.</td>
<td>A los electrones internos se les conoce como electrones de valencia.</td>
<td>F</td>
</tr>
<tr>
<td>4.</td>
<td>Al número entero positivo, negativo o cero que se asigna a cada elemento en un compuesto se denomina número de oxidación.</td>
<td>F</td>
</tr>
<tr>
<td>5.</td>
<td>Los gases nobles son los elementos más reactivos de la tabla periódica.</td>
<td>F</td>
</tr>
<tr>
<td>6.</td>
<td>Los átomos, iones o moléculas se unen entre sí para lograr estabilidad electrónica.</td>
<td>F</td>
</tr>
<tr>
<td>7.</td>
<td>El símbolo Na⁺ indica que el átomo de sodio ha tenido una oxidación.</td>
<td>F</td>
</tr>
<tr>
<td>8.</td>
<td>En el modelo del enlace iónico, el supuesto teórico principal es la existencia de transferencia de electrones entre los átomos.</td>
<td>F</td>
</tr>
<tr>
<td>9.</td>
<td>El símbolo Cl⁻ indica que el átomo de cloro ha tenido una reducción.</td>
<td>F</td>
</tr>
<tr>
<td>10.</td>
<td>Una fórmula química sólo expresa la composición cualitativa de una sustancia.</td>
<td>F</td>
</tr>
<tr>
<td>11.</td>
<td>En el modelo del covalente, el supuesto teórico principal es la existencia de compartición de electrones entre los átomos.</td>
<td>F</td>
</tr>
<tr>
<td>12.</td>
<td>En las estructuras de Lewis los electrones externos se representan con puntos, círculos o cruces.</td>
<td>F</td>
</tr>
<tr>
<td>13.</td>
<td>Se define como enlace químico a las distintas formas como se unen químicamente los átomos e iones entre sí para formar moléculas o redes cristalinas.</td>
<td>F</td>
</tr>
</tbody>
</table>
2. Adquisición y organización de la información

Actividad 4.2

En forma individual lee acerca de los diferentes modelos del enlace químico y la forma como se unen los átomos, iones y moléculas.

Introducción

El mundo material que nos rodea está formado por sustancias y mezclas de sustancias. Si observas a tu alrededor te darás cuenta que las rocas, la tierra, los árboles, las nubes, los seres humanos, etc., son mezclas complejas de sustancias químicas en los que necesariamente hay distintos tipos de átomos unidos entre sí.

Uno de los aspectos más relevantes de la química es la búsqueda de explicaciones del cómo y el por qué se unen los átomos. La forma en que los átomos se enlanzan ejerce un efecto profundo sobre las propiedades físicas y químicas de las sustancias.

Un ejemplo de ello, lo encontramos en el grafito y el diamante, los cuales son alótropos del carbono. El grafito es un material suave, resbaloso y quebradizo, que se emplea como lubricante de cerradura y para escritura. El diamante es uno de los materiales más duros que se conoce, valioso como piedra preciosa y utilizado para fabricar herramientas de corte industrial. Entonces, te preguntarás ¿Por qué estos materiales formados únicamente por átomos de carbono presentan propiedades tan diferentes?

La respuesta se encuentra en las distintas formas en que los átomos de carbono se enlanzan entre sí. En el grafito los átomos de carbono, forman capas de forma hexagonal, que al deslizarse sobre una hoja de papel van quedando sobre la superficie. En cambio en el diamante, éstos mismos átomos se unen formando estructuras tetraédricas mucho más rígidas.

En las reacciones químicas, los átomos de las sustancias que se combinan, se unen entre sí formando sustancias de naturaleza diferente a las reaccionantes. Las uniones o fuerzas que se establecen entre los átomos, ya sean del mismo elemento o de elementos diferentes, se denomina enlace químico. Nos debe quedar claro que en la formación de estos enlaces sólo participan los electrones externos conocidos como de valencia.

El enlace químico se define como la fuerza de atracción que mantiene unidos a los átomos, moléculas e iones, la cual siempre es de naturaleza eléctrica.
Electrones de valencia

Los electrones de valencia juegan un papel muy importante en la formación de los enlaces químicos entre los átomos e iones y son los responsables de las propiedades químicas de las sustancias.

Si analizamos la configuración electrónica del átomo de nitrógeno (\(^7N \)), en ella se puede observar, que en el último nivel de energía se encuentran 5 electrones externos (electrones de valencia)

El término valencia se deriva del latín «valere» que significa, «ser fuerte» o tener capacidad y valentía.

Debemos a Edward Frankland el concepto de «poder de combinación», que luego derivó en el de «valencia». Frankland encontró que átomos como N, P, As y Sb se combinaban con radicales orgánicos en las relaciones 1:3 y 1:5, mientras que Zn, Hg y O lo hacían en la relación 1:2. Con lo que concluyó:

… independientemente de cuál pueda ser el carácter de los átomos que se unen con otro dado, el poder de combinación del elemento atractivo se satisface siempre con el mismo número de aquellos átomos. E. Frankland, 1852.

Habrá que recordar en buena medida que la sistematización del trabajo de Mendeleiev en 1869, se debió al uso de la valencia de los elementos, ya que el uso del peso atómico como único factor de clasificación le impedía ordenar algunos elementos. La valencia de los elementos pudo ser entendida por los químicos, hasta que se avanzó en el conocimiento de la estructura del átomo.

La valencia de un átomo se definió originalmente como el número de átomos de hidrógeno que se pueden combinar con un átomo de un elemento dado. Así, la valencia del oxígeno en la molécula de agua (\(H_2O \)) es 2; y en el amoníaco (\(NH_3 \)), la valencia del nitrógeno es 3.

Sin embargo, el número de oxidación ha venido desplazando al término valencia, porque éste permite definir con mayor precisión la capacidad de combinación de un elemento en un compuesto.
Estructuras de Lewis y regla del octeto

Estructuras de Lewis

En 1913, Gilbert Newton Lewis propuso una representación pictórica para los electrones de valencia, en la que utilizó puntos, círculos o cruces, con la finalidad de explicar didácticamente, la forma cómo se transfieren o comparten los electrones cuando los átomos se unen.

Para ello, consideró lo siguiente:

1. En las estructuras de Lewis para los elementos representativos, el símbolo del elemento, representa el kernel del átomo (capas internas) y los electrones externos o de valencia se representan mediante puntos, cruces o círculos.

2. Al escribir estructuras de Lewis para iones monoatómicos, se debe tener en cuenta lo siguiente: por cada carga positiva que posea el catión, se le resta un punto del total que posea en forma neutra, y por cada carga negativa que posea el anión se le adiciona un punto, los cuales se colocan alrededor del símbolo del elemento. Por ejemplo:

 - Estructura de Lewis para el átomo de sodio: \(\text{Na} \)
 - Estructura de Lewis para el ion sodio: \(\text{Na}^+ \)

 - Estructura de Lewis para el átomo de azufre: \(\cdot \cdot \cdot \)
 - Estructura de Lewis para el ion sulfuro: \([\cdot \cdot \cdot]^{-2} \)

 - Estructura de Lewis para el átomo de nitrógeno: \(\cdot \cdot \cdot \)
 - Estructura de Lewis para el ion nitrurio: \([\cdot \cdot \cdot]^{-3} \)

 - Estructura de Lewis para el átomo de aluminio: \(\cdot \cdot \cdot \)
 - Estructura de Lewis para el ion aluminio: \(\text{Al}^{3+} \)
Regla del octeto

Las primeras ideas acerca del papel que juegan los electrones en la formación de los enlaces químicos, fueron las de Kossel y Lewis. Sus interpretaciones fueron más o menos complementarias, Walter Kossel en 1916, subrayó el fenómeno de la transferencia electrónica y Gilbert Newton Lewis en 1913, la compartición de electrones, pero ambos partieron de la misma premisa: la observación de que las configuraciones electrónicas de los gases nobles son extremadamente estables y la hipótesis de que los átomos tienden a adquirir dicha configuración cuando pierden, ganan o comparten electrones.

Como los gases nobles, a excepción del helio, tienen ocho electrones en su capa de valencia, la teoría de Lewis se conoce como teoría del octeto.

El químico alemán Walter Kossel propuso que esta estructura electrónica estable de 8 electrones, se logra cuando los átomos ceden o aceptan electrones. El norteamericano Gilbert Newton Lewis cuando los átomos comparten electrones.

Es muy importante tener en cuenta lo siguiente:

La existencia de muchos compuestos en los que están presentes átomos rodeados por menos o más de ocho electrones, trajo más tarde la necesidad de reformular la regla del octeto, ya que presenta limitaciones, como la de no funcionar para todos los elementos representativos y los elementos de transición y transición interna, debido a la existencia de orbitales d y f, respectivamente.
Modelos de enlace químico

Los enlaces entre los átomos e iones pueden ser de diferentes tipos: covalentes (simple, doble, triple y coordinado), iónicos, metálicos y las interacciones que se dan entre las moléculas, como las fuerzas de van der Waals y los enlace puente de hidrógeno.

A continuación abordaremos cada uno de los tipos de enlace y sus modelos teóricos que nos permiten explicar las propiedades físicas y químicas de las sustancias, desde un punto de vista macroscópico, submicroscópico y simbólico.

Modelo del enlace covalente

El enlace covalente se define como la fuerza de atracción que resulta al compartir electrones entre dos átomos no metálicos. Esta idea fue propuesta en 1913 por Lewis, y sigue siendo un concepto fundamental en la comprensión del enlace químico.

El término covalencia significa literalmente “valencia compartida” (así lo indica el prefijo “co”) y en efecto la covalencia se refiere a un tipo de enlace que se presenta cuando átomos no metálicos que tienen valores de electronegatividad iguales o muy cercanos se unen entre sí compartiendo sus electrones.

La formación del enlace covalente se puede ilustrar utilizando el modelo de Bohr o las estructuras de Lewis.

La electronegatividad es una medida de la atracción que ejerce un átomo de una molécula sobre el par de electrones compartidos. Cuanto más electronegativo es un átomo, mayor será su tendencia a atraer los electrones del enlace.

La diferencia de electronegatividad nos permite clasificar al enlace covalente como: no polar o polar.

Fig. 4.6 Valores relativos de electronegatividades, según la escala de Pauling, para los elementos representativos.

Existen diferentes tipos de enlaces covalentes, estos son: simple (sencillo), doble, triple y coordinado. Estos a su vez pueden ser de naturaleza no polar o polar. Pero, ¿cuándo saber si el enlace presenta cierta polaridad o no? o ¿cuándo una molécula puede ser considerada de naturaleza polar o no polar? Las cosas no son a veces tan sencillas, pero es necesario tener en cuenta lo siguiente:
Enlace covalente no polar

Se dice que un enlace covalente es no polar cuando la diferencia de electronegatividad entre los dos átomos unidos es cero.

Un ejemplo de ello, son las moléculas homonucleares: \(\text{I}_2, \text{Br}_2, \text{Cl}_2, \text{F}_2, \text{O}_2, \text{N}_2, \text{H}_2 \).

![Fig. 4.7 Moléculas homonucleares.](image)

Molécula homonuclear: Partícula formada por átomos del mismo elemento

Enlace covalente polar

Se dice que un enlace covalente es polar, cuando al unirse átomos diferentes, la diferencia de electronegatividad es mayor de cero y menor de 1.9.

Un ejemplo de ello, son las moléculas heteronucleares: \(\text{H}_2\text{O}, \text{HCl}, \text{NH}_3, \text{HBr}, \text{CH}_4, \text{CO}, \text{CO}_2 \).

![Fig. 4.8 Moléculas heteronucleares.](image)

Molécula heteronuclear: Partícula formada por átomos de diferentes elementos

En este tipo de enlace, el par de electrones compartido queda más cerca del átomo más electronegativo, originándose así un dipolo, esto es, el átomo más electronegativo quedará con una carga parcial negativa \((\delta^-) \) y el átomo menos electronegativo quedará con una carga parcial positiva \((\delta^+) \).

![Fig. 4.9 Dipolo en la molécula de cloruro de hidrógeno.](image)

Dipolo eléctrico: Sistema de dos cargas de signo opuesto e igual magnitud cercanas entre sí.
¿Cómo determinar si una molécula es polar o no polar?

Para predecir si una molécula es polar o no, necesitamos considerar su geometría molecular y si la molécula tiene o no enlaces polares.

Una **molécula** será **no polar** si satisface todas las condiciones siguientes:

a) Si todos los átomos (o grupos) terminales son iguales, CH₄, CO₂, PCl₅, BCl₃, SF₆, BeCl₂.

b) Si todos los átomos (o grupos) terminales están dispuestos simétricamente alrededor del átomo central, A, en la disposición geométrica que se muestra en las siguientes figuras.

c) Si los átomos (o grupos) terminales tienen las mismas cargas parciales.

Una **molécula** es **polar** si cumple con cualquiera de las condiciones siguientes:

a) Si uno o más átomos terminales son diferentes de los otros: CHCl₃, CO, HCl, etc.

b) Si los átomos terminales no están dispuestos simétricamente: H₂O, etc.

c) Si posee pares de electrones libres, NH₃, H₂O,

Enlace covalente simple

Otra forma de clasificar a los enlaces covalentes es tomar en cuenta el número de pares de electrones compartidos entre los átomos.

Enlace covalente simple o sencillo: Enlace formado por la unión de dos átomos de elementos no metálicos al compartir un par de electrones entre ellos, donde cada átomo aporta un electrón.

Algunos ejemplos de moléculas con enlaces covalentes simples o sencillos: F₂, Cl₂, Br₂, I₂, H₂O, H₂S, HCl, HBr, HF, HI, CH₄, NH₃, BCl₃, PCl₃, PCl₅, CCl₄, NF₃.
Un ejemplo de enlace covalente simple, es el que se forma cuando se unen los átomos de flúor para formar la molécula de flúor (F_2). En ella, cada átomo de flúor completa su nivel de valencia compartiendo mutuamente su electrón desapareado.

El par electrónico de enlace se muestra como un par de puntos entre los dos átomos de flúor, pero con frecuencia se utiliza un guión para representarlo. En la molécula de F_2, puede representarse como $F-F$.

¿Sabías que...
el flúor es un gas de color amarillo pálido, más denso que el aire, corrosivo y de olor penetrante e irritante, sumamente tóxico y el no metal más reactivo?

Fluoruro de hidrógeno, HF
El hidrógeno y el flúor reaccionan formando un gas incoloro llamado fluoruro de hidrógeno. Tanto el hidrógeno como el flúor necesitan un electrón para alcanzar configuración de gas noble, así que comparten un par de electrones y forman un enlace covalente simple. Esta reacción es muy explosiva y se puede representar como:

¿Sabías que...
el fluoruro de hidrógeno es sumamente corrosivo y debe conservarse en recipientes de plomo, acero o recipientes plásticos. El fluoruro de hidrógeno ataca al vidrio, por lo que se utiliza en el grabado del mismo, en termómetros, cristalería y cerámica.
Enlace covalente doble

El enlace covalente doble, es el enlace que se forma por la unión de dos átomos de elementos no metálicos al compartir dos pares de electrones entre ellos, donde cada átomo aporta dos electrones.

El enlace covalente doble es el segundo enlace que se forma entre dos átomos y se conoce también como enlace pi (π).

Molécula de oxígeno, O₂

La formación de la molécula de oxígeno es un ejemplo de ello, cada átomo aporta dos electrones para completar su octeto.

![Diagrama de molécula de oxígeno](image)

Molécula de dióxido de carbono, CO₂

En la formación de la molécula de dióxido de carbono, el átomo de carbono comparte dos pares de electrones con cada átomo de oxígeno.

![Diagrama de molécula de dióxido de carbono](image)

La teoría enlace valencia nos permite correlacionar el número de enlaces covalentes que puede formar un átomo de un elemento con su posición en la tabla periódica. Por ejemplo, los halógenos poseen 7 electrones de valencia, pero sólo uno de ellos queda desapareado al construir sus estructuras de Lewis. La teoría enlace-valencia nos dice que el número de enlaces covalentes que puede formar un átomo, depende del número de electrones desapareados que posee, por tanto, los halógenos sólo pueden formar un enlace covalente simple.

Se tienen los elementos, B, C, Si, N, P, O y S, ¿cuáles consideras que pueden formar enlaces covalentes dobles?

![Tabla periódica](image)

Existen muchos compuestos del carbono que poseen enlaces covalentes dobles como los aldehídos, las cetonas, los ácidos carboxílicos, los ésteres, las amidas y en todos ellos aparece el enlace C=O, asimismo en los alquenos donde aparece el enlace C=C.

Fig. 4.11 Número de enlaces covalentes que pueden formar algunos átomos de elementos representativos.
El enlace covalente triple, se define como el enlace formado por la unión de dos átomos de elementos no metálicos al compartir tres pares de electrones entre ellos, donde cada átomo aporta tres electrones. Es el tercer enlace que se forma entre dos átomos y está constituido por un enlace sigma (σ) y dos enlaces pi (π).

Molécula de nitrógeno, N_2

En la formación de la molécula de nitrógeno, N_2, cada átomo comparte tres pares de electrones para completar su octeto.

$$
\begin{align*}
\hat{N} & + \hat{N} \rightarrow \hat{N} \equiv \hat{N} \\
\text{o bien} & \\
\hat{N} & \equiv \hat{N}
\end{align*}
$$

Molécula de cianuro de hidrógeno, HCN

En la formación de la molécula de cianuro de hidrógeno, tanto el hidrógeno como el carbono y el nitrógeno logran configuración de gas noble.

$$
\begin{align*}
H & + \hat{C} + \hat{N} \rightarrow H \equiv C \equiv N \\
\text{o bien} & \\
H & \equiv C \equiv N
\end{align*}
$$

¿Sabías que...

el cianuro de hidrógeno es un gas incoloro, altamente venenoso, que tiene un ligero olor a almendras y que algunas frutas como el aguacate y las almendras amargas lo contienen en su semilla? Una concentración de 300 ppm (partes por millón) en el aire, es suficiente para matar a un ser humano en cuestión de minutos.
De los átomos que pueden formar enlaces covalentes triples, sólo se encuentra el nitrógeno, el oxígeno y el carbono. Existen compuestos del carbono que poseen moléculas con enlaces covalentes triples, como los alquinos donde aparece el enlace $\text{C} \equiv \text{C}$.

El enlace covalente coordinado se define como la unión química entre dos átomos de elementos no metálicos que resulta de compartir un par de electrones, los cuales son aportados por uno de los átomos y el otro sólo contribuye con un orbital vacío.

Este enlace se simboliza con una flecha para indicar la procedencia de los dos electrones, porque una vez formado, éste es idéntico al enlace covalente simple.

Formación del ion amonio, NH_4^+

Si analizamos la molécula de amoníaco, encontraremos en ella un par de electrones libres en el átomo de nitrógeno, los cuales son compartidos con el ion hidrógeno, para formar el ion amonio. El ion hidrógeno puede ser proporcionado por un ácido o por el agua.

Formación del ion hidronio, H_3O^+

El ion hidrógeno también conocido como protón es una especie inestable por lo que siempre se encuentra unida a otros átomos. En solución acuosa forma el ion hidronio, al unirse por medio de un enlace covalente coordinado a la molécula de agua.
Molécula de ácido sulfúrico, H₂SO₄

En la molécula de ácido sulfúrico, el átomo de azufre completa su octeto, al compartir sus electrones con los oxígenos unidos al hidrógeno, por tanto, la única forma de que los oxígenos que no poseen hidrógeno completen su octeto, es formando enlaces covalentes coordinados con el átomo de azufre, como se muestra en la siguiente estructura de Lewis.

![Estructura de Lewis del ácido sulfúrico](image)

Modelo del enlace iónico

De acuerdo al modelo del enlace iónico, éste se forma debido a la atracción entre iones de carga opuesta (cationes y aniones), que se forman cuando uno o más electrones se transfieren desde el nivel de valencia de un átomo hasta el nivel de valencia de otro.

En este modelo se considera que existe una transferencia de electrones entre los átomos. El átomo que pierde electrones queda cargado positivamente (metal) y el que los gana queda cargado negativamente (no metal).

Este modelo nos permite explicar de manera sencilla la formación de los compuestos iónicos, como si sólo se unieran dos partículas de carga opuesta. Sin embargo, las interacciones no son unidireccionales, sino que forman redes con enlaces multidireccionales.

![Diagrama del modelo iónico de NaCl](image)

Veamos el caso del cloruro de sodio:

![Cristal de NaCl (halita) y Modelo de un cristal de NaCl](image)

Fig. 4.13 Los niveles macroscópico (cristal de sal) y submicroscópico (modelo) del cloruro de sodio.
1. ¿Un ion de sodio se enlaza solamente al ion cloruro que le donó su electrón?
Falso. Un ion positivo será atraído por cualquier ion negativo vecino, ya que no importa cómo las partículas adquirieron su carga. La atracción electrostática depende solamente de la cantidad de carga, y de la distancia entre los dos objetos cargados.

2. Un átomo de sodio puede formar sólo un enlace iónico, porque tiene un electrón en su capa de valencia.
Falso: Un ion sodio se puede enlazar fuertemente a tantos iones cloruro como pueda empacar con eficacia alrededor de él en una red cristalina regular. En el NaCl habrá seis iones cloruro enlazados fuertemente a cada ion sodio y seis iones sodio enlazados fuertemente a cada ion cloruro.

3. Los iones sodio al unirse con los iones cloruro forman la molécula de cloruro de sodio.
Falso: No se forman moléculas, se forman redes de iones o estructuras cristalinas. La fórmula NaCl representa la celda unitaria o la mínima porción representativa del cristal de cloruro de sodio.

Como ya lo hemos señalado, los compuestos iónicos están constituidos por cationes y aniones. A excepción del ion amonio, todos los cationes se derivan de átomos metálicos. Los compuestos iónicos más simples son los compuestos binarios (que están formados por dos elementos), aquellos que se forman de la unión química de un metal con un no metal, ejemplo de ello, son las sales binarias, los hidruros y los óxidos de cualquier catión metálico. Sin embargo existen compuestos iónicos ternarios y cuaternarios como los hidróxidos y las oxisales respectivamente.

A continuación revisaremos los enlaces intermoleculares

Enlaces intermoleculares

¿Se pueden atraer las moléculas de un elemento o de un compuesto? ¿Qué pasaría si no se atraeran?

A las fuerzas que mantienen unidos a los átomos dentro de la molécula se les denomina **fuerzas interatómicas** o **intramoleculares** y a las fuerzas de atracción que se establecen entre las moléculas, se les llaman **fuerzas intermoleculares**.

Los enlaces intermoleculares son conocidos como fuerzas intermoleculares o atracciones intermoleculares. Son fuerzas de atracción que se establecen entre las moléculas.

Las fuerzas intermoleculares son generalmente más débiles que las fuerzas intramoleculares, por ello se requiere menor energía para evaporar las moléculas de un líquido que para romper sus enlaces químicos internos.
Fuerzas de van der Waals

Las fuerzas intermoleculares son de naturaleza electrostática y se denominan **fuerzas de van der Waals**, en memoria del físico holandés. Este tipo de fuerzas son importantes en la determinación de las propiedades físicas de las sustancias, tales como el punto de ebullición, puntos de fusión, solubilidad, estado de agregación de la materia, entre otras.

Las fuerzas de van der Waals pueden ser de tres tipos:

a) Fuerzas dipolo-dipolo

Son fuerzas de atracción que se establecen entre moléculas polares, por ejemplo, HCl, H₂O, HBr, etc. En este caso, las moléculas se alinean de tal forma que el extremo con carga parcial negativa (δ⁻) de una molécula es atraída por el extremo con carga parcial positiva (δ⁺) de la otra.

![Fig. 4.15 La atracción dipolo-dipolo entre moléculas con dipolos permanentes.](image)

b) Fuerzas de inducción de dipolo

Son fuerzas de atracción que se presentan cuando una molécula polar induce un dipolo temporal en una molécula no polar, lo que ocasiona que se presente también entre ellas un enlace temporal.

![Fig. 4.16 Dipolos inducidos.](image)

Por ejemplo, un dipolo inducido puede presentarse entre las moléculas de agua y el oxígeno molecular, O₂, el nitrógeno, N₂ o el cloro, Cl₂.

![Fig. 4.17 Ejemplos de dipolos inducidos.](image)
c) Fuerzas de dispersión de London o fuerzas de London

Las fuerzas intermoleculares que se presentan entre moléculas no polares, como el Cl₂, N₂, O₂, CH₄, CO₂, I₂, etc. se les denomina fuerzas de dispersión de London. Estas fuerzas son del tipo dipolo inducido-dipolo inducido.

Este tipo de fuerzas explican la existencia del estado líquido y sólido, en las sustancias no polares.

Las sustancias que están compuestas de moléculas no polares normalmente son gases o líquidos, con un bajo punto de ebullición. Las sustancias que están compuestas de moléculas polares, usualmente tienen puntos de ebullición más altos que los compuestos no polares. Muchas de las moléculas polares son sólidas, bajo condiciones normales.

Enlace puente de hidrógeno

El enlace por puentes de hidrógeno es un tipo especial de fuerzas dipolo-dipolo que se presenta cuando el hidrógeno de moléculas polares se encuentra unido a nitrógeno (N), oxígeno (O) o flúor (F). El hidrógeno parcialmente positivo (δ⁺) de una molécula, es atraído por el nitrógeno, oxígeno o flúor, parcialmente negativo (δ⁻) de la otra molécula.

La energía promedio de un enlace por puente de hidrógeno es mucho mayor que las otras atracciones dipolo-dipolo, por tal razón los enlaces por puente de hidrógeno influyen de manera determinante en las estructuras y propiedades de muchos compuestos.

A partir de la presencia de enlaces por puentes de hidrógeno se pueden explicar varias propiedades. Por ejemplo:

a) El por qué compuestos de baja masa molecular, como el agua, tienen puntos de ebullición altos (100° C) al nivel del mar.

b) El por qué algunas sustancias son muy solubles en otras, por ejemplo, el alcohol etílico es muy soluble en agua, ya que ambos forman puentes de hidrógeno.
Enlace metálico

Los metales son sustancias reticulares, es decir están constituidos por una red cristalina. En un cristal metálico, los átomos se pueden imaginar como una estructura de iones positivos inmersos en una nube de electrones externos deslocalizados. Como ejemplos de sustancias reticulares metálicas se encuentran todos los elementos metálicos.

Modelo de un cristal metálico

Cada círculo representa a un ion metálico y el área gris representa a los electrones externos deslocalizados. En el modelo se representan a los átomos metálicos como iones, pero en realidad siguen siendo una red de átomos metálicos, porque sus electrones los siguen compartiendo aunque estén deslocalizados.

La gran fuerza de cohesión que le da resistencia mecánica a las estructuras metálicas se explica a partir de esta deslocalización de electrones y la gran movilidad de los electrones deslocalizados explica el brillo metálico y la buena conductibilidad térmica y eléctrica de los metales. Tal como puede apreciarse en la siguiente figura.

Características de las sustancias reticulares metálicas

<table>
<thead>
<tr>
<th>Tipo de sustancia</th>
<th>Porción mínima representativa</th>
<th>Fuerzas que mantienen las unidades juntas</th>
<th>Características generales</th>
<th>Ejemplos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metálica</td>
<td>Átomos</td>
<td>Enlace metálico</td>
<td>Blandos o duros, de bajos a altos puntos de fusión, buenos conductores del calor y la electricidad.</td>
<td>Todos los metales: Fe, Zn, Ca, Na, Cu, Ag, etc.</td>
</tr>
</tbody>
</table>
3. Procesamiento de la información

Actividad 4.3

En forma colaborativa elabora un mapa conceptual que rescate en gran medida los conceptos que se relacionan con el enlace químico y sus modelos.
4. Aplicación de la información

Actividad 4.4

En forma individual o colaborativa resuelva los siguientes cuestionamientos.

1. Completa las estructuras de Lewis para los elementos representativos.

 ![Diagrama de estructuras de Lewis](image)

2. Utiliza las estructuras de Lewis para mostrar la formación de enlaces covalentes simples entre los siguientes átomos.

 - a) Dos átomos de cloro
 - b) Cuatro átomos de hidrógeno y un átomo de carbono
 - c) Tres átomos de hidrógeno y un átomo de nitrógeno
 - d) Dos átomos de hidrógeno y un átomo de azufre
e) Dos átomos de hidrógeno y un átomo de oxígeno

\[
\begin{array}{c}
\text{H} \\
\text{O} \\
\text{H}
\end{array}
\]

f) Un átomo de hidrógeno y un átomo de bromo

\[
\begin{array}{c}
\text{H} \\
\text{Br}
\end{array}
\]

3. Completa las siguientes estructuras de Lewis, señalando mediante guiones o flechas los tipos de enlace que se presentan entre los átomos en cada una de las moléculas.

Ácido fosfórico

\[
\begin{array}{c}
\text{H} \\
\text{H} \\
\text{O} \\
\text{P} \\
\text{O} \\
\text{O} \\
\text{H} \\
\text{O} \\
\text{H}
\end{array}
\]

Ácido nítrico

\[
\begin{array}{c}
\text{H} \\
\text{O} \\
\text{O} \\
\text{N} \\
\text{O} \\
\text{H} \\
\text{O}
\end{array}
\]

Ácido carbónico

\[
\begin{array}{c}
\text{H} \\
\text{O} \\
\text{C} \\
\text{H} \\
\text{O} \\
\text{O}
\end{array}
\]

Ácido acético

\[
\begin{array}{c}
\text{H} \\
\text{O} \\
\text{H} \\
\text{C} \\
\text{C} \\
\text{H} \\
\text{O}
\end{array}
\]

Acetona

\[
\begin{array}{c}
\text{O} \\
\text{H} \\
\text{C} \\
\text{H} \\
\text{C} \\
\text{H} \\
\text{H} \\
\text{H} \\
\text{H}
\end{array}
\]
4. Da respuesta a los siguientes cuestionamientos.

1. El enlace químico que se forma cuando los átomos comparten electrones entre sí se denomina:
 a) Iónico
 b) Covalente
 c) Metálico
 d) Magnético

2. El nombre que antiguamente se daba a la capacidad de combinación de un átomo es:
 a) Número de masa
 b) Número atómico
 c) Número de oxidación
 d) Valencia

3. De acuerdo a la teoría de Kossel y Lewis, ¿cuántos electrones se necesitan en los niveles de energía más externos de la mayoría de los átomos, para que sean químicamente estables?
 a) 2
 b) 4
 c) 6
 d) 8

4. Según este modelo, el enlace químico se forma cuando los electrones se transfieren de un átomo a otro?
 a) Iónico
 b) Covalente
 c) Magnético
 d) Metálico

5. ¿Por qué los gases nobles no forman compuestos fácilmente? porque...
 a) no tienen ningún electrón externo
 b) tienen niveles de energía externos vacíos
 c) tienen 7 electrones en sus niveles de energía externos
 d) los subniveles s y p están llenos

6. Fuerza que mantiene unidos a los átomos en un compuesto.
 a) Fórmula química
 b) Enlace químico
 c) Electromagnética
 d) Número atómico

7. ¿Cuál es la carga del ion monoatómico que forma el azufre?
 a) 1-
 b) 1+
 c) 2+
 d) 2-

8. La regla del octeto se basa en:
 a) La configuración electrónica externa de los elementos de transición
 b) La estabilidad química de los gases nobles debido a su configuración electrónica externa ns² np⁶.
 c) La configuración electrónica del elemento con número atómico 8.
 d) a y b son correctas
9. ¿Cuál de los siguientes enunciados caracteriza la formación de un enlace iónico?

a) Metal + no metal, transferencia de electrones
b) No metal + no metal, compartición de electrones
c) Metal + metal, cationes envueltos con una nube de electrones deslocalizados
d) No metal + metal, compartición de electrones
e) Ninguna de las anteriores

10. La polaridad en las moléculas se presenta cuando se unen...

a) Iones positivos
b) Átomos de diferente electronegatividad
c) Iones negativos
d) Átomos con igual electronegatividad
e) Ninguna de las anteriores

11. El enlace covalente coordinado o dátivo, se establece cuando los electrones compartidos son...

a) Donados por uno de los átomos enlazados
b) Atraídos mutuamente
c) Aportados por los dos átomos enlazados
d) Aportados por cada átomo de la molécula
e) Ninguna de las anteriores

12. Al perder o ganar electrones, un átomo se transforma en un...

a) Elemento b) Compuesto c) Cualquier de los anteriores d) Ion

13. Para que se forme un enlace iónico se requiere de...

a) Dos metales b) Dos no metales c) Un no metal y un metal
d) Dos metaloides e) Ninguna de las anteriores

14. ¿Con cuál elemento, el cloro puede formar un enlace covalente simple; con la característica de que ambos cumplan la regla del octeto?

a) Hidrógeno b) Cloro c) Potasio d) Calcio e) Sodio

15. Cuando se unen elementos metálicos que poseen uno, dos o tres electrones de valencia con no metales, lo hacen...

a) Compartiendo electrones b) Ganando electrones
c) Perdiendo electrones d) Cediendo y ganando electrones
e) Ninguna de las anteriores

16. ¿Qué sucede cuando dos átomos de electronegatividades muy diferentes, se unen?

a) El de mayor electronegatividad, gana electrones
b) El de menor electronegatividad gana electrones
c) El de menor electronegatividad pierde electrones
d) Los incisos a y c son correctos
e) Ninguna de las anteriores es correcta
17. Cuando el átomo de magnesio participa en una reacción química...
 a) Pierde un electrón b) Gana un electrón c) Pierde dos electrones
d) Gana dos electrones e) Ninguna de las anteriores es correcta

18. ¿Cuál es la estructura de Lewis para el ion aluminio?
 a) \(\hat{\text{Al}}^+\) b) \(\hat{\text{Al}}^-\) c) \(\hat{\text{Al}}^{3+}\) d) \(\text{Al}^{3+}\)
e) Ninguna de las anteriores es correcta

19. La estructura de Lewis para el átomo de fósforo es:
 a) \(\cdot\hat{\text{P}}\) b) \(\cdot\hat{\text{P}}\) c) \(\cdot\hat{\text{P}}\) d) \(\cdot\hat{\text{P}}\)
e) Ninguna de las anteriores es correcta

20. ¿Cuál de las siguientes representaciones de iones es correcta?
 a) \(\text{Na}^2+\) b) \(\text{S}^-\) c) \(\text{P}^{3-}\) d) \(\text{Mg}^{3+}\) e) \(\text{Fe}^+\)

21. ¿Cuál de las siguientes moléculas es polar?
 a) \(\text{CH}_4\) b) \(\text{CO}_2\) c) \(\text{CCl}_4\) d) \(\text{NH}_3\) e) Todas son polares

22. ¿Cuál de las siguientes moléculas es no polar?
 a) \(\text{CH}_4\) b) \(\text{HF}\) c) \(\text{HCl}\) d) \(\text{H}_2\text{O}\) e) \(\text{HI}\)
5. Autoevaluación

Actividad 4.5

Elabora un escrito donde reflexiones sobre la importancia del enlace químico en la comprensión de la forma cómo se encuentra estructurada la materia viva e inanimada.
Autoevaluación

Actividad 4.6

Analiza cada una de las preguntas iniciales de falso y verdadero y fundamenta tu respuesta.

<table>
<thead>
<tr>
<th>Pregunta</th>
<th>Fundamentación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. La fórmula NaCl representa una molécula de cloruro de sodio.</td>
<td></td>
</tr>
<tr>
<td>2. Para los químicos, el término reducción significa ganancia y no disminución.</td>
<td></td>
</tr>
<tr>
<td>3. A los electrones internos se les conoce como electrones de valencia.</td>
<td></td>
</tr>
<tr>
<td>4. Al número entero positivo, negativo o cero que se asigna a cada elemento en un compuesto se denomina número de oxidación.</td>
<td></td>
</tr>
<tr>
<td>5. Los átomos, iones o moléculas se unen entre sí para lograr estabilidad electrónica.</td>
<td></td>
</tr>
<tr>
<td>6. Los átomos, iones o moléculas se unen entre sí para lograr estabilidad electrónica.</td>
<td></td>
</tr>
<tr>
<td>7. El símbolo Na(^+) indica que el átomo de sodio ha tenido una oxidación.</td>
<td></td>
</tr>
<tr>
<td>8. En el modelo del enlace iónico, el supuesto teórico principal es la existencia de transferencia de electrones entre los átomos.</td>
<td></td>
</tr>
<tr>
<td>9. El símbolo Cl(^-) indica que el átomo de cloro ha tenido una reducción.</td>
<td></td>
</tr>
<tr>
<td>10. En el modelo del enlace covalente, el supuesto teórico principal es la existencia de compartición de electrones entre los átomos.</td>
<td></td>
</tr>
</tbody>
</table>
La construcción de fórmulas químicas: ¿cómo nombrar a las sustancias?

- Describe la nomenclatura sistemática y común para las sustancias inorgánicas.
- Utiliza las reglas para formular y dar nombre a las sustancias inorgánicas.
- Valora la importancia de establecer convenciones y acuerdos internacionales para nombrar a las sustancias inorgánicas.

1. Problematización

¿Por qué la tabla periódica es una herramienta importante en el estudio de la química?

__
__
__
__

Actividad 4.7

Explora tus conocimientos previos, dando respuesta a las siguientes aseveraciones como falsas o verdaderas.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. La fórmula H₂O expresa que la molécula de agua está constituida por dos átomos de hidrógeno y uno de oxígeno.</td>
<td>F V</td>
</tr>
<tr>
<td>2. Una fórmula química expresa la composición cualitativa y cuantitativa de una sustancia.</td>
<td>F V</td>
</tr>
<tr>
<td>3. Una fórmula química se constituye por símbolos químicos, subíndices y coeficientes.</td>
<td>F V</td>
</tr>
<tr>
<td>4. En la fórmula 3 NH₄Cl el coeficiente es el 4.</td>
<td>F V</td>
</tr>
<tr>
<td>5. Los coeficientes expresan el número de moléculas, unidades fórmula o número de moles de una sustancia.</td>
<td>F V</td>
</tr>
<tr>
<td>6. Los subíndices expresan el número de átomos de los elementos presentes en una molécula o unidad fórmula.</td>
<td>F V</td>
</tr>
<tr>
<td>7. La IUPAC son las siglas en inglés de la International Union of Pure and Applied Chemistry.</td>
<td>F V</td>
</tr>
<tr>
<td>8. En una fórmula química la suma de cargas negativas y positivas siempre es mayor de cero.</td>
<td>F V</td>
</tr>
<tr>
<td>9. Los subíndices presentes en una fórmula química resultan del cruce de los números de oxidación sin los signos positivos y negativos.</td>
<td>F V</td>
</tr>
<tr>
<td>10. Los metales siempre tienen números de oxidación negativos.</td>
<td>F V</td>
</tr>
</tbody>
</table>
2. Adquisición y organización de la información

Actividad 4.8

En forma individual lee acerca de la construcción de fórmulas químicas y la forma de nombrarlas, al final elabora una síntesis de la misma.

En la construcción de fórmulas químicas, los números de oxidación son de gran utilidad, por ello, es importante aprenderlos. A continuación revisaremos este concepto.

Número de oxidación (estado de oxidación)

El *número de oxidación*, es un indicador que compara el ambiente electrónico de un átomo en una molécula con el ambiente electrónico de un átomo aislado del mismo elemento.

Los *números de oxidación* son convencionales; se trata de un número entero, positivo, negativo o cero, que se asigna a cada elemento presente en un compuesto y está referido, al número de cargas reales o aparentes que tendría un átomo en una molécula (o en una celda unitaria), si los electrones fueran transferidos completamente.

Al construir una fórmula química, se debe tener en cuenta las siguientes reglas:

1. Todo elemento en su estado libre, como el Na, Mg, Ag, Fe, tendrá un número de oxidación igual a cero. Asimismo, aquellos elementos que en su forma natural se encuentran como moléculas diatómicas, triatómicas, tetratómicas o poliatómicas, como, I₂, Cl₂, P₄, S₈, H₂, F₂, O₂.

2. Los metales tienen estados de oxidación positivos, mientras que los no metálicos tienen estados de oxidación negativos cuando se unen con los metales y los metaloides.

3. Los no metales presentan estados de oxidación positivos, cuando se unen a otro elemento no metálico más electronegativo.

4. Para que la fórmula del compuesto sea eléctricamente neutra, la suma de los números de oxidación positivos y negativos debe ser igual a cero.

Al construir una fórmula química, siempre se escribe primero la parte positiva y después la parte negativa. Los subíndices se determinan cruzando los valores numéricos sin los signos positivo y negativo. Ejemplos.

1. En el óxido de calcio (cal viva) la suma de las cargas +2 + (-2) = 0, como éstas son numéricamente iguales, los subíndices no son necesarios.

 \[
 \text{Ca}^{+2} \text{O}^{-2}
 \]

 La fórmula es CaO

2. En el hidróxido de magnesio, el catión magnesio Mg²⁺ y el anión oxhidrilo OH⁻, se combinan para formar este compuesto. La suma de las cargas +2 + (-1) = +1. Para que la suma de las cargas sea igual a cero se debe multiplicar por 2 la carga -1 del anión \(\text{OH}^- \) y agregar un subíndice “2” al ion oxhidrilo, se deberá colocar un paréntesis para que el subíndice multiplique a ambos elementos.

 \[
 2 \text{Mg}^{+2} (\text{OH})^{-2}
 \]
3. En el fosfato de calcio, el ion calcio Ca^{2+} se combina con el ion fosfato PO_4^{3-} para formar el $\text{Ca}_3(\text{PO}_4)_2$. El siguiente diagrama nos ilustra la forma de determinar los subíndices del compuesto.

![Diagrama de estructura de compuestos](image)

| Tabla 4.1 Números de oxidación de los elementos más comunes en sus compuestos. |
|---|---|---|---|---|---|---|---|---|---|
| **H**\(^+1\) | **H**\(^-1\) | **Be**\(^{+2}\) | **Li**\(^{+1}\) | **B**\(^{+3}\) | **C**\(^{+4}\) | **C**\(^{+2}\) | **N**\(^{+5}\) | **N**\(^{+3}\) | **O**\(^{-2}\) |
| **Mg**\(^{+2}\) | **Na**\(^{+1}\) | **Al**\(^{+3}\) | **Mg**\(^{+2}\) | **Be**\(^{+2}\) | **Si**\(^{+4}\) | **Si**\(^{+2}\) | **P**\(^{+5}\) | **P**\(^{+3}\) | **S**\(^{+4}\) |
| **K**\(^{+1}\) | **Ca**\(^{+2}\) | **Cr**\(^{+6}\) | **Cr**\(^{+4}\) | **Cr**\(^{+3}\) | **Fe**\(^{+3}\) | **Fe**\(^{+2}\) | **Co**\(^{+3}\) | **Ni**\(^{+2}\) | **Cu**\(^{+2}\) |
| **Cu**\(^{+1}\) | **Zn**\(^{+2}\) | **As**\(^{+3}\) | **As**\(^{+5}\) | **Se**\(^{+6}\) | **Se**\(^{+4}\) | **Se**\(^{+2}\) | **Br**\(^{+7}\) | **Br**\(^{+5}\) | **Br**\(^{+3}\) |
| **I**\(^{-1}\) | **Te**\(^{+2}\) | **Te**\(^{+4}\) | **Te**\(^{+6}\) | **I**\(^{-1}\) | **I**\(^{-3}\) | **I**\(^{-5}\) | **I**\(^{-7}\) | **Pb**\(^{+2}\) | **Pb**\(^{+4}\) |
| **Hg**\(^{+1}\) | **Pt**\(^{+2}\) | **Pt**\(^{+4}\) | **Au**\(^{+1}\) | **Au**\(^{+3}\) | **Hg**\(^{+1}\) | **Hg**\(^{+2}\) | | | |
| **Fr**\(^{+1}\) | **Ra**\(^{+2}\) | | | | | | | | |
Fórmulas químicas

Una fórmula química se usa para expresar la composición cualitativa y cuantitativa de las moléculas o las unidades fórmulas que constituyen una sustancia molecular o reticular respectivamente.

Veamos algunos ejemplos.

<table>
<thead>
<tr>
<th>Símbolo químico</th>
<th>Óxido de calcio</th>
<th>Cloruro de amonio</th>
<th>Fosfato de calcio</th>
<th>Hidróxido de magnesio</th>
<th>Hidruro de aluminio</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaO</td>
<td>NH₄Cl</td>
<td>Ca₃(PO₄)₂</td>
<td>Mg(OH)₂</td>
<td>AlH₃</td>
<td></td>
</tr>
</tbody>
</table>

Características de una fórmula química

Una fórmula química está constituida por símbolos químicos, subíndices y coeficientes. Los **símbolos químicos** representan macroscópicamente el tipo de elementos presentes en el compuesto y submicroscópicamente el tipo de átomos en la molécula o unidad fórmula. Los **subíndices** representan el número de átomos de esos elementos presentes en el compuesto o el número relativo de iones en una celda unitaria de un compuesto iónico. Se escriben siempre en la parte inferior derecha del símbolo químico. Los **coeficientes** indican el número de moléculas o unidades fórmula; así como también el número de moles presentes de la sustancia.

Por ejemplo:

Fig. 4.23 Nivel simbólico; componentes de una fórmula química y lo que representan.
Nomenclatura de los compuestos

Hace algunos siglos, el número de sustancias era tan reducido que no había gran dificultad para su aprendizaje. Los nombres que se utilizaban para designarlas casi siempre se derivaban de sus propiedades, de sus aplicaciones o de su origen, por ejemplo, cal viva, cal apagada, yeso, piedra caliza, sales de Epsom, sosa cáustica, leche de magnesia, polvo de hornear, ácido muriático, etc., algunos de estos nombres aún se siguen utilizando. Se conocen como nombres comunes, antiguos, triviales o tradicionales.

En la actualidad se conocen casi 60 millones de sustancias entre orgánicas e inorgánicas, lo que hace más que evidente la imposibilidad de seguir utilizando este tipo de nombres y la necesidad de establecer un sistema que regule la forma de nombrar a las sustancias.

En 1892, en Ginebra, Suiza, por primera vez se establecieron las bases para regular la nomenclatura de los compuestos orgánicos, cosa que no sucedió con la nomenclatura de los compuestos inorgánicos, ya que dependiendo del autor o de la situación se podían proponer varios métodos para nombrar a un mismo compuesto.

¿Sabías que...
la palabra nomenclatura se deriva de los vocablos del Latín *nomen* (nombre) *calare* (llamar).

Nomenclatura común o antigua

Este método es de los más antiguos y aún se utiliza para dar nombre a compuestos iónicos, y covalentes, aunque la tendencia es al desuso, Generalmente se emplea para distinguir a dos iones del mismo metal que tienen carga diferente. Se conoce como Sistema de Ginebra, en él se emplea la terminación -ico para el ion metálico o no metálico de mayor carga, y -oso para el de menor.

<table>
<thead>
<tr>
<th>Catión</th>
<th>Nombre del catión</th>
<th>Catión</th>
<th>Nombre del catión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$^{2+}$</td>
<td>ion ferroso</td>
<td>Hg$_2$$^{2+}$</td>
<td>ion mercuroso*</td>
</tr>
<tr>
<td>Fe$^{3+}$</td>
<td>ion férrico</td>
<td>Hg$^{2+}$</td>
<td>ion mercúrico</td>
</tr>
<tr>
<td>Cu$^{1+}$</td>
<td>ion cuprós o</td>
<td>Au$^{1+}$</td>
<td>ion auroso</td>
</tr>
<tr>
<td>Cu$^{2+}$</td>
<td>ion cúprico</td>
<td>Au$^{3+}$</td>
<td>ion áurico</td>
</tr>
<tr>
<td>Pb$^{2+}$</td>
<td>ion plumbós o</td>
<td>Co$^{2+}$</td>
<td>ion cobalasco</td>
</tr>
<tr>
<td>Pb$^{4+}$</td>
<td>ion plúmbico</td>
<td>Co$^{3+}$</td>
<td>ion cóbaltico</td>
</tr>
<tr>
<td>Sn$^{2+}$</td>
<td>ion estanoso</td>
<td>Ni$^{2+}$</td>
<td>ion niqueloso</td>
</tr>
<tr>
<td>Sn$^{4+}$</td>
<td>ion estántico</td>
<td>Mn$^{2+}$</td>
<td>ion manganeso</td>
</tr>
</tbody>
</table>

Tabla 4.2. Cationes comunes

* El ion Hg$_2$$^{2+}$ (‘Hg-Hg’) existe como dímero, es decir, se forma al unirse dos átomos de mercurio entre sí, de forma tal que cada ion se presenta como mercuroso.
Cuando el elemento no metálico presenta más de dos números de oxidación, se utilizan prefijos y sufijos de acuerdo con la siguiente tabla.

<table>
<thead>
<tr>
<th>No. de oxidación</th>
<th>Prefijo</th>
<th>Nombre del no metal o metaloide</th>
<th>Sufijo</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>+2</td>
<td>Hipo</td>
<td>oso</td>
</tr>
<tr>
<td>+3</td>
<td>+4</td>
<td></td>
<td>oso</td>
</tr>
<tr>
<td>+5</td>
<td>+6</td>
<td></td>
<td>ico</td>
</tr>
<tr>
<td>+7</td>
<td></td>
<td></td>
<td>ico</td>
</tr>
</tbody>
</table>

Por ejemplo, el compuesto SO$_3^-$, de acuerdo a este tipo de nomenclatura se denominará anhídrido sulfúrico, porque el número de oxidación del azufre es +6.

Nomenclatura IUPAC

La necesidad de contar con un sistema de nomenclatura a partir de la cual se pudiera nombrar la sustancia y determinar su composición a partir del nombre, llevó a los químicos a fundar en 1919 un organismo científico internacional al que denominaron, International Union of Pure and Applied Chemistry, IUPAC, por sus siglas en inglés.

Los métodos recomendados por la IUPAC para los compuestos inorgánicos son: el sistema Stock, la nomenclatura descriptiva o del prefijo multiplicativo.

Sin embargo, la IUPAC recomienda que la permanencia de nombres tradicionales se limite sólo a compuestos que tienen nombres comunes muy arraigados. por ejemplo, ácido sulfúrico, agua, amoniaco, etc.

Nomenclatura Stock

El sistema Stock se denominó así, en honor al químico alemán Alfred Stock (1876-1946). En este sistema se indica la carga del ion metálico mediante un número romano entre paréntesis, el cual se escribe después del nombre del metal, sólo si éste posee más de un número de oxidación. Este método es el más moderno y su uso tiende a generalizarse.

<table>
<thead>
<tr>
<th>Catión</th>
<th>Nombre del catión</th>
<th>Catión</th>
<th>Nombre del catión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$^{2+}$</td>
<td>hierro (II)</td>
<td>Hg$_2^{2+}$</td>
<td>mercurio (I)*</td>
</tr>
<tr>
<td>Fe$^{3+}$</td>
<td>hierro (III)</td>
<td>Hg$_2^{2+}$</td>
<td>mercurio (II)</td>
</tr>
<tr>
<td>Cu$^{1+}$</td>
<td>cobre (I)</td>
<td>Au$^{1+}$</td>
<td>oro (I)</td>
</tr>
<tr>
<td>Cu$^{2+}$</td>
<td>cobre (II)</td>
<td>Au$^{3+}$</td>
<td>oro (III)</td>
</tr>
<tr>
<td>Pb$^{2+}$</td>
<td>plomo (II)</td>
<td>Co$_2^{2+}$</td>
<td>cobalto (II)</td>
</tr>
<tr>
<td>Pb$^{4+}$</td>
<td>plomo (IV)</td>
<td>Co$_3^{3+}$</td>
<td>cobalto (III)</td>
</tr>
<tr>
<td>Sn$^{2+}$</td>
<td>estaño (II)</td>
<td>Ni$_2^{2+}$</td>
<td>níquel (II)</td>
</tr>
<tr>
<td>Sn$^{4+}$</td>
<td>estaño (IV)</td>
<td>Mn$^{2+}$</td>
<td>manganeso (II)</td>
</tr>
</tbody>
</table>
Nomenclatura descriptiva o del prefijo multiplicativo

Este tipo de nomenclatura es mucho más fácil para nombrar o escribir la fórmula de un compuesto, dado que ésta expresa la cantidad de átomos de cada elemento presentes en la molécula.

Tabla 4.5. Prefijos griegos y su uso en la nomenclatura.

<table>
<thead>
<tr>
<th>Prefijo griego</th>
<th>Número</th>
<th>Compuesto</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>mono</td>
<td>1</td>
<td>CO</td>
<td>Monóxido de carbono</td>
</tr>
<tr>
<td>di-</td>
<td>2</td>
<td>SO₂</td>
<td>Dióxido de azufre</td>
</tr>
<tr>
<td>tri-</td>
<td>3</td>
<td>B₂O₃</td>
<td>Trióxido de diboro</td>
</tr>
<tr>
<td>tetra-</td>
<td>4</td>
<td>N₂O₄</td>
<td>Tetraóxido de dinitrógeno</td>
</tr>
<tr>
<td>penta</td>
<td>5</td>
<td>P₂O₅</td>
<td>Pentaóxido de difósforo</td>
</tr>
<tr>
<td>hexa-</td>
<td>6</td>
<td>As₄O₆⁺</td>
<td>Hexaóxido de tetraarsénico</td>
</tr>
<tr>
<td>hepta-</td>
<td>7</td>
<td>Cl₂O₇</td>
<td>Heptaóxido de dicloro</td>
</tr>
<tr>
<td>octa-</td>
<td>8</td>
<td>S₈</td>
<td>Octaazufre</td>
</tr>
<tr>
<td>nona- (o ene)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>deca</td>
<td>10</td>
<td>P₄O₁₀</td>
<td>Decóxido de tetrafósforo</td>
</tr>
</tbody>
</table>

Un dímero es una molécula compuesta de dos moléculas idénticas simples. Las moléculas As₂O₃ y P₂O₅ en realidad existen como As₄O₆ y P₄O₁₀.
3. Procesamiento de la información

Actividad 4.9

En forma colaborativa elabora un mapa conceptual que rescate en gran medida los conceptos centrales sobre fórmulas químicas y las distintas formas de dar nombre a las sustancias.
4. Aplicación de la información

Actividad 4.10

En forma individual o colaborativa resuelva los siguientes cuestionamientos:

1. En una fórmula química, el número que indica los átomos presentes en una molécula o en una celda unitaria se denomina:

 a) Número de oxidación
 b) Superíndices
 c) Subíndices
 d) Números atómicos

2. Un grupo de átomos que actúan juntos, como si fueran un sólo átomo cargado, es un...

 a) Ion poliatómico
 b) Ion negativo
 c) Molécula
 d) Cristal

3. Al número entero, positivo, negativo o cero, que se asigna a un elemento presente en una fórmula química, se le denomina:

 a) Valencia
 b) Número de oxidación
 c) Número de coordinación
 d) Subíndice

4. Generalmente presentan estados de oxidación positivos, porque son menos electropositivos.

 a) Metales
 b) No metales
 c) Metaloides
 d) Gases nobles

5. En una fórmula química representan cualitativamente a los elementos o a los átomos presentes en la molécula o unidad fórmula.

 a) Subíndice
 b) Coeficiente
 c) Símbolo químico
 d) Superíndice

6. En este tipo de nomenclatura, la carga o número de oxidación se expresa mediante un número romano colocado entre paréntesis.

 a) Stock
 b) Descriptiva
 c) Común
 d) Tradicional

7. En la fórmula, $5 \text{H}_2\text{SO}_4$ el número que se encuentra como coeficiente, es:

 a) 5
 b) 4
 c) 2
 d) 1

8. El nombre más común para la sustancia H_2SO_4, es:

 a) Ácido tetraoxosulfato de dihidrógeno
 b) Ácido tetraoxosulfúrico (VI)
 c) Ácido tetraoxosulfúrico (2-)
 d) Ácido sulfúrico
5. Autoevaluación

Actividad 4.11

Analiza cada una de las preguntas iniciales de falso y verdadero y fundamenta tu respuesta.

<table>
<thead>
<tr>
<th>Pregunta</th>
<th>Fundamentación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. La fórmula H₂O expresa que la molécula de agua está constituida por dos átomos de hidrógeno y uno de oxígeno.</td>
<td></td>
</tr>
<tr>
<td>2. Una fórmula química expresa la composición cualitativa y cuantitativa de una sustancia.</td>
<td></td>
</tr>
<tr>
<td>3. En la fórmula 3 NH₄Cl el coeficiente es el 4.</td>
<td></td>
</tr>
<tr>
<td>4. Los coeficientes expresan el número de moléculas, unidades fórmula o número de moles de una sustancia.</td>
<td></td>
</tr>
<tr>
<td>5. Los subíndices expresan el número de átomos de los elementos presentes en una molécula o unidad fórmula.</td>
<td></td>
</tr>
<tr>
<td>7. En una fórmula química la suma de cargas negativas y positivas siempre es mayor de cero.</td>
<td></td>
</tr>
<tr>
<td>8. Los subíndices presentes en una fórmula química resultan del cruce de los números de oxidación sin los signos positivos y negativos.</td>
<td></td>
</tr>
<tr>
<td>9. Los metales siempre tienen números de oxidación negativos.</td>
<td></td>
</tr>
<tr>
<td>10. Todo elemento libre o en su estado natural su número de oxidación es cero.</td>
<td></td>
</tr>
</tbody>
</table>
Autoevaluación

Actividad 4.12

Reflexiona acerca de la importancia de establecer un sistema convencional que sea utilizado por toda la comunidad para nombrar a las sustancias y donde expliques las ventajas que tiene el sistema moderno sobre el antiguo.
Las sustancias iónicas: nomenclatura e importancia en la vida cotidiana

- Describe la nomenclatura sistemática y común para dar nombre a sustancias iónicas.
- Construye fórmulas y da nombre a sustancias iónicas, tales como: óxidos, hidróxidos, sales haloideas, oxisales e hidruros.
- Valora la importancia de algunas sustancias iónicas en la vida cotidiana, por ejemplo: cloruro de sodio.

1. Problematización

¿Cómo saber si una sustancia es iónica o covalente con sólo examinar su fórmula química?

Actividad 4.13

Explora tus conocimientos previos, dando respuesta a las siguientes aseveraciones como falsas o verdaderas.

<table>
<thead>
<tr>
<th>N.°</th>
<th>Aseveración</th>
<th>F</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Los óxidos son compuestos iónicos que resultan de la unión de dos no metales.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>2.</td>
<td>La palabra anhidro se deriva de los vocablos griegos a sin, hidro agua, que significa “sin agua”.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>3.</td>
<td>Cuando un metal se combina químicamente con el oxígeno, se forman óxidos.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>4.</td>
<td>Una base de Arrhenius se describe como aquella sustancia que libera iones hidróxido al disolverse en agua.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>5.</td>
<td>Las bases se identifican porque tiñen de rojo el papel tornasol azul.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>6.</td>
<td>Los óxidos básicos son óxidos metálicos y se denominan así, porque al reaccionar con el agua forman hidróxidos o bases.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>7.</td>
<td>El nombre común del Ca(OH)₂ es el de cal apagada.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>8.</td>
<td>KCl es la sal haloidea de mayor consumo diario.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>9.</td>
<td>El carbonato de calcio, CaCO₃ es el principal constituyente de las conchas marinas y el mármol.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>10.</td>
<td>El sulfato de calcio, CaSO₄ se conoce comúnmente como yeso.</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>11.</td>
<td>En la nomenclatura Stock se usan prefijos y sufijos.</td>
<td>F</td>
<td>V</td>
</tr>
</tbody>
</table>
2. Adquisición y organización de la información

Actividad 4.14

En forma individual lee acerca de las sustancias iónicas su nomenclatura e importancia en la vida cotidiana, al final elabora una síntesis de la misma.

Nomenclatura de compuestos iónicos

Los compuestos iónicos están constituidos por cationes y aniones. A excepción del íon amonio, todos los cationes se derivan de átomos metálicos. Los compuestos iónicos más simples son los compuestos binarios (que están formados por dos elementos), aquellos que se forman de la unión química de un metal con un no metal, ejemplo de ello, son las sales haloideas, los hidruros y los óxidos de cualquier catión metálico. Sin embargo existen compuestos iónicos ternarios y cuaternarios como los hidróxidos, las oxisales y algunas sales haloideas.

Es necesario precisar, que la nomenclatura binaria, parte del supuesto que todas las sustancias están constituidas por una parte positiva y otra negativa, así sean compuestos binarios, ternarios o cuaternarios. En este apartado revisaremos la nomenclatura de cada uno de estos tipos de compuestos iónicos.

Nomenclatura de óxidos básicos o metálicos

Los óxidos básicos o metálicos, son compuestos iónicos binarios que resultan de la combinación de un metal con el oxígeno. Por ejemplo, el óxido de sodio.

Fig. 4.25 La formación del óxido de sodio desde los tres niveles de representación de la química.

Fig. 4.26 Modelo de la reacción del sodio con el oxígeno (nivel submicroscópico).
Se denominan óxidos básicos porque al reaccionar con el agua forman hidróxidos o bases, o porque al reaccionar con los ácidos forman sales.

![Fig. 4.27 Nivel simbólico y submicroscópico de la reacción de formación del hidróxido de sodio.](image)

![Fig. 4.28 Modelo de la red cristalina del hidróxido de sodio.](image)

Para dar nombre a los óxidos básicos generalmente se utilizan dos tipos de nomenclatura, el **método de Stock** y la **nomenclatura común**.

Ejemplos:

<table>
<thead>
<tr>
<th>Catión M⁺</th>
<th>Anión O²⁻</th>
<th>Fórmula</th>
<th>Nombre Stock</th>
<th>Nombre común</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu²⁺</td>
<td>O²⁻</td>
<td>CuO</td>
<td>Óxido de cobre (II)</td>
<td>Óxido cúprico</td>
</tr>
<tr>
<td>Al³⁺</td>
<td></td>
<td>Al₂O₃</td>
<td>Óxido de aluminio</td>
<td>Óxido de aluminio</td>
</tr>
<tr>
<td>Na⁺</td>
<td></td>
<td>Na₂O</td>
<td>Óxido de sodio</td>
<td>Óxido de sodio</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td></td>
<td>MgO</td>
<td>Óxido de magnesio</td>
<td>Óxido de magnesio</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td></td>
<td>FeO</td>
<td>Óxido de hierro (II)</td>
<td>Óxido ferroso</td>
</tr>
</tbody>
</table>

Los iones metálicos que no tienen carga variable como los del grupo IA (Li⁺, Na⁺, K⁺, Rb⁺ y Cs⁺), IIA (Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺ y Ra²⁺), IB (Ag⁺) y IIIB (Zn²⁺), en la nomenclatura Stock, no es necesario explicitar su carga empleando números romanos.
Nomenclatura de hidróxidos o bases

Los hidróxidos son compuestos iónicos ternarios, que resultan de la combinación de un óxido básico con el agua, o de la combinación de un metal activo con el agua.

![Fig. 4.29 Óxido de calcio (Cal viva)](image1)

Para dar nombre a los hidróxidos se utilizan la nomenclatura común y la de Stock. Ejemplos.

<table>
<thead>
<tr>
<th>Catión M⁺</th>
<th>Anión (OH⁻)</th>
<th>Fórmula</th>
<th>Nombre Stock</th>
<th>Nombre común</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe³⁺</td>
<td></td>
<td>Fe(OH)₃</td>
<td>Hidróxido de hierro (III)</td>
<td>Hidróxido férrico</td>
</tr>
<tr>
<td>Hg²⁺</td>
<td></td>
<td>Hg(OH)₂</td>
<td>Hidróxido de mercurio (II)</td>
<td>Hidróxido mercúrico</td>
</tr>
<tr>
<td>Li⁺</td>
<td></td>
<td>LiOH</td>
<td>Hidróxido de litio</td>
<td>Hidróxido de litio</td>
</tr>
<tr>
<td>Pt²⁺</td>
<td></td>
<td>Pt(OH)₂</td>
<td>Hidróxido de platino (II)</td>
<td>Hidróxido platinoso</td>
</tr>
</tbody>
</table>

Los hidróxidos son bases, pero debe quedar claro que no todas las bases son hidróxidos. Se denominan así por la presencia del ion hidróxido (OH⁻) unido al ion metálico.

Los hidróxidos o bases son sustancias que en disolución acuosa presentan las siguientes características:

a) Al disolverse en agua liberan iones hidróxido (OH⁻).

b) Tiñen de azul el papel tornasol rojo.

c) Colorean de rosa fucsia al adicionarles fenolftaleína.

d) Su pH es superior a 7.

e) Tienen la capacidad de reaccionar vigorosamente con los ácidos, dando como resultado sal y agua.
Usos o aplicaciones de algunos hidróxidos en la vida cotidiana

El hidróxido de litio (LiOH), es un compuesto utilizado en la fabricación de jabón a base de litio, para limpiar grasas. Fue utilizado para eliminar el CO₂ en la cabina de la nave espacial Apolo, ya que al reaccionar con éste, se forma carbonato de litio.

El hidróxido de sodio (NaOH) también se utiliza en la fabricación de jabón y como destapacanos o quitacochambre en la cocina de los hogares y restaurantes.

El hidróxido de potasio (KOH) también se utiliza en la manufactura de jabones ligeros.

El hidróxido de calcio, Ca(OH)₂, se utiliza en la construcción para hacer argamasa o mezcla, utilizada en la construcción para la pega de ladrillos. También se utiliza en la nixtamalización del maíz, para elaborar tortillas.

El hidróxido de magnesio, Mg(OH)₂, se utiliza como antiácido estomacal, laxante y para obtener Mg a partir de él. El hidróxido de aluminio Al(OH)₃, mezclado con el hidróxido de magnesio son el principio activo del «Melox» utilizado como antiácido y antiestomacal.

Nomenclatura de sales

Las sales son sustancias iónicas que se forman al reaccionar generalmente un ácido con una base, produciéndose así una reacción de neutralización. Existen dos tipos de sales: binarias y ternarias. Cuando la sal proviene de la reacción de un ácido binario (HF, HCl, HBr, HI, H₂S), ésta puede ser binaria (NaCl, NaF) o ternaria (NaHS). Si la sal proviene de un ácido ternario (HCN, H₂SO₄, HNO₃, H₃PO₄, HClO, etc.), ésta puede ser ternaria (Na₂SO₄) o cuaternaria (NaHSO₄).

Nomenclatura de sales haloideas

Las sales haloideas mejor conocidas como haluros, son sales que se forman de la combinación de un hidróácido (binario o ternario) con una base. Estas sales no poseen oxígeno en su composición. Al dar nombre a los haluros, éstos siempre llevarán la terminación uro.

<table>
<thead>
<tr>
<th>Grupo IVA(14)</th>
<th>Grupo VA(15)</th>
<th>Grupo VIA(16)</th>
<th>Grupo VIIA(17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C⁴⁻</td>
<td>N³⁻</td>
<td>F⁻</td>
<td>Cl⁻</td>
</tr>
<tr>
<td>Carburo</td>
<td>Nitruro</td>
<td>Fluoruro</td>
<td>Cloruro</td>
</tr>
<tr>
<td>Si⁴⁻</td>
<td>P³⁻</td>
<td>S²⁻</td>
<td>Br⁻</td>
</tr>
<tr>
<td>Siliciuro</td>
<td>Fosfuro</td>
<td>Sulfuro</td>
<td>Bromuro</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cl⁻</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Se²⁻</td>
<td>Cloruro</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenuro</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Te²⁻</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telururo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I⁻</td>
<td></td>
<td>Yoduro</td>
</tr>
</tbody>
</table>

Tabla 4.6 Aniones monoatómicos según su posición en la tabla periódica.
Para dar nombre a las sales haloideas se puede utilizar la nomenclatura de Stock y la común. Sin embargo, la nomenclatura que facilita más la construcción de nombres y fórmulas es la de Stock. Veamos algunos ejemplos.

<table>
<thead>
<tr>
<th>Catión M+</th>
<th>Anión (X-)</th>
<th>Fórmula</th>
<th>Nombre Stock</th>
<th>Nombre común</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe3+</td>
<td>Cl</td>
<td>FeCl3</td>
<td>Cloruro de hierro (III)</td>
<td>Cloruro férrico</td>
</tr>
<tr>
<td>Hg2+</td>
<td>Br</td>
<td>HgBr2</td>
<td>Bromuro de mercurio (II)</td>
<td>Bromuro mercúrico</td>
</tr>
<tr>
<td>Li+</td>
<td>S2-</td>
<td>Li2S</td>
<td>Sulfuro de litio</td>
<td>Sulfuro de litio</td>
</tr>
<tr>
<td>Pt2+</td>
<td>F</td>
<td>PtF2</td>
<td>Fluoruro de platino (II)</td>
<td>Fluoruro platinoso</td>
</tr>
</tbody>
</table>

Nomenclatura para las oxisales

Las oxisales son sustancias que como su nombre lo indica, contienen oxígeno y se pueden formar, al combinar un oxiácido con un hidróxido o un metal activo.

\[
\begin{align*}
\text{Zn} + \text{H}_2\text{SO}_4 & \rightarrow \text{ZnSO}_4 + \text{H}_2 \\
\text{H}_2\text{SO}_4 + 2\text{NH}_4\text{OH} & \rightarrow (\text{NH}_4)_2\text{SO}_4 + 2\text{H}_2\text{O} \\
\text{H}_2\text{SO}_4 + \text{Ca(OH)}_2 & \rightarrow \text{CaSO}_4 + 2\text{H}_2\text{O} \\
2\text{H}_2\text{SO}_4 + 2\text{Na} & \rightarrow 2\text{NaHSO}_4 + \text{H}_2
\end{align*}
\]

Las oxisales pueden ser: **neutras, ácidas, dobles y básicas.**

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>Tipo de oxisal</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaSO₄</td>
<td>Oxisal neutra</td>
</tr>
<tr>
<td>Ca(HSO₄)₂</td>
<td>Oxisal ácido</td>
</tr>
<tr>
<td>Ca Na₂(SO₄)₂</td>
<td>Oxisal doble</td>
</tr>
<tr>
<td>Ca(OH)NO₃</td>
<td>Oxisal básica</td>
</tr>
</tbody>
</table>

En nuestro caso se pondrá énfasis en las oxisales neutras y sólo abordaremos algunas de las otras oxisales de mayor uso en la vida cotidiana. **Tabla 4.7** Tipos de oxisales.

Para dar nombre a las oxisales por el método Stock o común, es necesario aprender los nombres y fórmulas de los oxianiones o radicales. Para ello, consideraremos las siguientes reglas:

1. La carga en el oxianión o radical será numéricamente igual al número de iones hidrógeno que se sustituyen o liberan de la molécula del ácido.
2. Los nombres de los oxianiones se derivan del nombre del oxiácido que le da origen y cambian las terminaciones **oso** e **ico** del ácido por **ito** y **ato**, respectivamente.

Así, el ion nitrito **(NO₂)⁻** se deriva del ácido nitroso, **HNO₂**, y el ion nitrato **(NO₃)⁺**, del ácido nítrico, **HNO₃**.
3. Al dar nombre a las oxisales, primero se nombra al oxianión o anión poliatómico y enseguida el nombre del metal, con la terminación oso e íco si se utiliza la nomenclatura común, y el número de oxidación del metal entre paréntesis cuando se utiliza la nomenclatura de Stock.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>Método Stock</th>
<th>Nombre común o trivial</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuSO₄</td>
<td>Sulfato de cobre (II)</td>
<td>Sulfato cúprico</td>
</tr>
<tr>
<td>Pb(SO₄)₂</td>
<td>Sulfato de plomo (IV)</td>
<td>Sulfato plúmbico</td>
</tr>
<tr>
<td>FeSO₄</td>
<td>Sulfato de hierro (II)</td>
<td>Sulfato ferroso</td>
</tr>
</tbody>
</table>

Tabla 4.8. Oxianiones.

<table>
<thead>
<tr>
<th>Nombre del radical</th>
<th>Radical</th>
<th>Nombre del radical</th>
<th>Radical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hipobromito</td>
<td>BrO⁻</td>
<td>Carbonato</td>
<td>CO₃²⁻</td>
</tr>
<tr>
<td>Bromito</td>
<td>BrO₂⁻</td>
<td>Bicarbonato</td>
<td>HCO₃⁻</td>
</tr>
<tr>
<td>Bromato</td>
<td>BrO₃⁻</td>
<td>Cromato</td>
<td>CrO₄²⁻</td>
</tr>
<tr>
<td>Perbromato</td>
<td>BrO₄⁻</td>
<td>Dicromato</td>
<td>Cr₂O₇⁻</td>
</tr>
<tr>
<td>Fosfato</td>
<td>PO₄³⁻</td>
<td>Peryodato</td>
<td>IO₄⁻</td>
</tr>
<tr>
<td>Fosfito</td>
<td>PO₃³⁻</td>
<td>Yodato</td>
<td>IO₃⁻</td>
</tr>
<tr>
<td>Sulfato</td>
<td>SO₄²⁻</td>
<td>Permanganato</td>
<td>MnO₄⁻</td>
</tr>
<tr>
<td>Sulfito</td>
<td>SO₃²⁻</td>
<td>Silicato</td>
<td>SiO₃²⁻</td>
</tr>
<tr>
<td>Hiposulfito</td>
<td>SO₂²⁻</td>
<td>Nitrato</td>
<td>NO₃⁻</td>
</tr>
<tr>
<td>Perclorato</td>
<td>ClO₄⁻</td>
<td>Nitrito</td>
<td>NO₂⁻</td>
</tr>
<tr>
<td>Clorato</td>
<td>ClO₃⁻</td>
<td>Arsenato</td>
<td>AsO₄³⁻</td>
</tr>
<tr>
<td>Clorito</td>
<td>ClO₂⁻</td>
<td>Borato</td>
<td>BO₃³⁻</td>
</tr>
</tbody>
</table>
Parodia al sulfato ferroso
con música de la canción de Domingo Corrales.

Parodia compuesta e interpretada por el profesor Gilberto García en la década de los 70’s dedicada a una de las sales que mayor uso encuentra en la medicina, para el tratamiento de casos de anemia hipocrómica y especialmente en mujeres embarazadas. La principal función de esta sal, es la estimulación de la producción de hemoglobina.

Actividad 4.15

Indaga en diversas fuentes electrónicas o bibliográficas, los siguientes conceptos rescatados de la parodia del sulfato ferroso.

- **Sulfato ferroso**

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuerzas de van der Waals</td>
<td></td>
</tr>
<tr>
<td>Hemólisis</td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td></td>
</tr>
<tr>
<td>Cirrosis</td>
<td></td>
</tr>
<tr>
<td>Hipocromía</td>
<td></td>
</tr>
</tbody>
</table>

Q.F.B. Gilberto García Ramírez
Profesor de la Unidad Académica
Preparatoria Central de la
Universidad Autónoma de Sinaloa
Nomenclatura de hidruros iónicos

Los hidruros iónicos son compuestos que resultan de la unión química entre un metal y el hidrógeno. En este tipo de compuestos el hidrógeno se presenta como anión, H^{-}, y recibe el nombre de hidruro.

Los hidruros formados con los metales de transición se conocen como hidruros intersticiales, porque consisten en una red metálica más o menos distorsionada, dentro de la cual se encuentran dispersos los átomos de hidrógeno, ocupando los huecos disponibles en la estructura del metal. Debido a esto, es muy difícil contar con un buen contenedor metálico para el hidrógeno, ya que éste se mete entre los intersticios metálicos. De los metales de transición, el paladio es el que mayor capacidad tiene para absorber hidrógeno y formar hidruros.

Al igual que los compuestos anteriores, los métodos para dar nombre a los hidruros iónicos son el de Stock y la nomenclatura común.

<table>
<thead>
<tr>
<th>Fórmula química</th>
<th>Método de Stock</th>
<th>Nomenclatura común</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiH</td>
<td>Hidruro de litio</td>
<td>Hidruro de litio</td>
</tr>
<tr>
<td>PbH$_4$</td>
<td>Hidruro de plomo (IV)</td>
<td>Hidruro plúmbico</td>
</tr>
<tr>
<td>AlH$_3$</td>
<td>Hidruro de aluminio</td>
<td>Hidruro de aluminio</td>
</tr>
</tbody>
</table>

Conozca más ...

Sobre los hidruros metálicos

La fácil absorción del H$_2$ por el paladio se ha empleado para separar H$_2$ de otros gases y para la purificación del hidrógeno a escala industrial. A una temperatura de 300 a 400 K, el H$_2$ se disocia en hidrógeno atómico sobre la superficie del Pd. Los átomos de H se disuelven en metal y bajo la presión de H$_2$, los átomos se difunden y se recombinan para formar H$_2$ sobre la superficie opuesta. Debido a que ninguna otra molécula presenta esta propiedad, el resultado es hidrógeno (H$_2$) absolutamente puro.
3. Procesamiento de la información

Actividad 4.16

En forma colaborativa elabora un mapa conceptual que rescate en gran medida los conceptos centrales acerca de los compuestos iónicos (óxidos, hidróxidos, sales haloideas, oxisales e hidruros, su nomenclatura y ejemplos de cada uno de ellos).

```
Compuestos iónicos

como

Óxidos  Hidróxidos  Sales haloideas  Oxisales  Hidruros
```
4. Aplicación de la información

Actividad 4.17

En forma colaborativa resuelva los siguientes cuestionamientos.

1. Completa la siguiente tabla de óxidos con sus respectivas fórmulas y nombres de cada uno de ellos, según corresponda.

<table>
<thead>
<tr>
<th>Catión/Anión</th>
<th>Fórmula</th>
<th>Nombre Stock</th>
<th>Nombre común</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Fe}^{3+})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Hg}^{2+})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Li}^+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Pt}^{2+})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Fe}^{2+})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Ca}^{2+})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Pb}^{4+})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Escriba la fórmula química de los siguientes óxidos básicos.
 a) Óxido de estroncio | ____________ | f) Óxido auroso | ____________ |
 b) Óxido de bario | ____________ | g) Óxido cobáltico | ____________ |
 c) Óxido plumboso | ____________ | h) Óxido de estaño (IV) | ____________ |
 d) Óxido niquélico | ____________ | i) Óxido de cobre (I) | ____________ |
 e) Óxido de cromo (VI) | ____________ | j) Óxido de plata | ____________ |

3. Escriba el nombre Stock y común de los siguientes óxidos básicos, donde sea posible.

<table>
<thead>
<tr>
<th>Fórmula química</th>
<th>Método Stock</th>
<th>Nomenclatura común</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Cr}_2\text{O}_3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{FeO})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{PbO}_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Au}_2\text{O}_3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{ZnO})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. En la siguiente tabla se muestran las fórmulas químicas y los usos de algunos óxidos básicos, escriba sus nombres haciendo uso de los dos tipos de nomenclatura.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>Nombre común</th>
<th>Nombre Stock</th>
<th>Usos</th>
</tr>
</thead>
<tbody>
<tr>
<td>BeO</td>
<td></td>
<td></td>
<td>Se usa en los reactores atómicos como regulador de temperatura.</td>
</tr>
<tr>
<td>MgO</td>
<td></td>
<td></td>
<td>En la fabricación de ladrillos refractarios (para hornos) e instrumentos ópticos y talco.</td>
</tr>
<tr>
<td>CaO</td>
<td></td>
<td></td>
<td>En la construcción: fabricación de acero y cemento. En el tratamiento de agua.</td>
</tr>
<tr>
<td>Al<sub>2</sub>O<sub>3</sub></td>
<td></td>
<td></td>
<td>En la fabricación de abrasivos, refractarios, cerámica y gemas artificiales.</td>
</tr>
<tr>
<td>SnO<sub>2</sub></td>
<td></td>
<td></td>
<td>En la obtención de Sn y sus compuestos.</td>
</tr>
<tr>
<td>Na<sub>2</sub>O<sub>2</sub></td>
<td></td>
<td></td>
<td>Como blanqueador en la industria textil.</td>
</tr>
<tr>
<td>GeO<sub>2</sub></td>
<td></td>
<td></td>
<td>En la fabricación de transistores y de vidrios que transmiten luz infrarroja.</td>
</tr>
<tr>
<td>PbO</td>
<td></td>
<td></td>
<td>En la fabricación de acumuladores; elaboración de cerámica y vidrio.</td>
</tr>
<tr>
<td>PbO<sub>2</sub></td>
<td></td>
<td></td>
<td>Como cátodo en los acumuladores (baterías de autos). Como agente oxidante en la fabricación de cerillos y en la pirotecnia.</td>
</tr>
<tr>
<td>HgO</td>
<td></td>
<td></td>
<td>En la elaboración de pintura marina y pigmentos para porcelana. Como ánodo en las baterías de mercurio.</td>
</tr>
<tr>
<td>CrO<sub>2</sub></td>
<td></td>
<td></td>
<td>En la elaboración de cintas magnéticas.</td>
</tr>
<tr>
<td>Cr<sub>2</sub>O<sub>3</sub></td>
<td></td>
<td></td>
<td>En la fabricación de abrasivos, refractarios y semiconductores. Como pigmento verde para colorear el vidrio.</td>
</tr>
<tr>
<td>MnO<sub>2</sub></td>
<td></td>
<td></td>
<td>En la fabricación de acero. Como componente de las pilas alcalinas y pilas secas y en la fabricación de pinturas para los textiles.</td>
</tr>
<tr>
<td>TiO<sub>2</sub></td>
<td></td>
<td></td>
<td>Como colorante en cerámica, en pintura y laca blanca.</td>
</tr>
</tbody>
</table>
Actividad 4.18

Elabora un escrito donde reflexiones acerca de la importancia de las sustancias iónicas en la vida cotidiana, teniendo como ejemplo al cloruro de sodio.

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__
Las sustancias covalentes: nomenclatura e importancia en la vida cotidiana.

- Describe la nomenclatura sistemática y común para dar nombre a sustancias covalentes.
- Construye fórmulas y da nombre a sustancias covalentes, tales como: anhídridos (óxidos ácidos), oxiácidos, hidrácidos e hidruros covalentes.
- Reflexiona sobre los beneficios y riesgos que pueden ocasionar al ambiente, el uso de sustancias covalentes.

1. Problematización

¿Sólo las sustancias covalentes están formadas por moléculas?

Actividad 4.19

Explora tus conocimientos previos, dando respuesta a las siguientes aseveraciones como falsas o verdaderas.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. La unión de dos o más átomos iguales o diferentes forman una molécula.</td>
<td>F V</td>
</tr>
<tr>
<td>2. Las sustancias covalentes se forman por la unión de elementos no metálicos.</td>
<td>F V</td>
</tr>
<tr>
<td>3. Los anhídridos u óxidos ácidos resultan de la combinación de un metal con el oxígeno.</td>
<td>F V</td>
</tr>
<tr>
<td>4. Un ácido de Arrhenius se describe como aquella sustancia que libera iones hidrógeno al disolverse en agua.</td>
<td>F V</td>
</tr>
<tr>
<td>5. Los óxidos ácidos al reaccionar con el agua forman hidróxidos.</td>
<td>F V</td>
</tr>
<tr>
<td>6. Los hidrácidos son compuestos que resultan de la combinación del hidrógeno con los no metales de los grupos VI A (16) y VII A (17).</td>
<td>F V</td>
</tr>
<tr>
<td>7. El CO₂ y el CO son los óxidos del cobalto.</td>
<td>F V</td>
</tr>
<tr>
<td>8. El H₂SO₄ es el ácido de mayor importancia industrial para un país.</td>
<td>F V</td>
</tr>
<tr>
<td>9. El NO₂ es un óxido del nitrógeno que biológicamente tiene un efecto vasodilatador, la Viagra libera este compuesto.</td>
<td>F V</td>
</tr>
<tr>
<td>10. El HCl es un hidrácido que el estómago secreta para ayudar a digerir los alimentos.</td>
<td>F V</td>
</tr>
<tr>
<td>11. La nomenclatura que más debe ser utilizada por los científicos, es la común.</td>
<td>F V</td>
</tr>
</tbody>
</table>
2. Adquisición y organización de la información

Actividad 4.20

En forma individual lee acerca de la nomenclatura de las sustancias covalentes y su importancia en la vida cotidiana. Al final elabora una síntesis.

Nomenclatura de sustancias covalentes

Las sustancias covalentes resultan de la unión de elementos no metálicos, entre ellos tenemos a los óxidos ácidos también conocidos como anhídridos, los oxíácidos conocidos como oxácidos, los hidrácidos y los hidruros covalentes.

Nomenclatura de óxidos ácidos o anhídridos

Los óxidos ácidos o anhídridos son compuestos covalentes binarios que resultan de la combinación de un no metal con el oxígeno. Ejemplo:

\[
\text{Nivel simbólico } \quad 2 \text{Cl}_2 + \text{O}_2 \rightarrow 2 \text{Cl}_2\text{O} \quad \text{Anhídrido hipocloroso}
\]

Los anhídridos se caracterizan porque al reaccionar con el agua producen oxíácidos, por ejemplo:

\[
\text{Cl}_2\text{O} + \text{H}_2\text{O} \rightarrow 2 \text{HClO} \quad \text{Ácido hipocloroso}
\]

Se les denomina anhídridos, porque provienen de ácidos inorgánicos completamente deshidratados. Aunque no todos los óxidos ácidos son anhídridos.

Para dar nombre a los óxidos ácidos se puede utilizar la nomenclatura común, la de Stock y la del prefijo multiplicativo (descriptiva), estas dos últimas de la IUPAC.

Nomenclatura común

Para los elementos no metálicos (o metaloides) que presentan sólo dos números de oxidación, como el boro (B), el carbono (C) y el silicio (Si), se utilizará el sufijo **oso** para el menor y el **ico** para el mayor número de oxidación. Ejemplos:
Cuando el elemento no metálico presenta más de dos números de oxidación, se utilizarán prefijos y sufijos de acuerdo con sus números de oxidación. Para ello, utilizaremos la tabla de sufijos y prefijos.

<table>
<thead>
<tr>
<th>No. de oxidación</th>
<th>Prefijo</th>
<th>Nombre del no metal o metaloide</th>
<th>Sufijo</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>Hipo</td>
<td></td>
<td>oso</td>
</tr>
<tr>
<td>+3</td>
<td></td>
<td></td>
<td>oso</td>
</tr>
<tr>
<td>+5</td>
<td></td>
<td></td>
<td>ico</td>
</tr>
<tr>
<td>+7</td>
<td>Per</td>
<td></td>
<td>ico</td>
</tr>
</tbody>
</table>

Ejemplo:

- \(\text{N}^{+1}_2 \text{O}^{-2} \) Anhídrido hiponitroso
- \(\text{N}^{+3}_2 \text{O}^{-2}_3 \) Anhídrido nitroso
- \(\text{N}^{+5}_2 \text{O}^{-2}_5 \) Anhídrido nítrico

Para dar nombre a los óxidos ácidos o anhídridos también se puede utilizar la nomenclatura Stock y la descriptiva.

Nomenclatura Stock

<table>
<thead>
<tr>
<th>Compuesto</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{N}_2\text{O})</td>
<td>Óxido de nitrógeno (I)</td>
</tr>
<tr>
<td>(\text{N}_2\text{O}_3)</td>
<td>Óxido de nitrógeno (III)</td>
</tr>
<tr>
<td>(\text{N}_2\text{O}_5)</td>
<td>Óxido de nitrógeno (V)</td>
</tr>
</tbody>
</table>

Nomenclatura descriptiva

Este tipo de nomenclatura es mucho más fácil para nombrar o escribir la fórmula de un compuesto, dado que ésta expresa la cantidad de átomos de cada elemento presentes en la molécular.
Si seguimos con los mismos ejemplos, tenemos:

<table>
<thead>
<tr>
<th>Compuesto</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>B(_2)O(_3)</td>
<td>Trióxido de diboro</td>
</tr>
<tr>
<td>CO(_2)</td>
<td>Dióxido de carbono</td>
</tr>
<tr>
<td>B(_2)O</td>
<td>Monóxido de diboro</td>
</tr>
<tr>
<td>CO</td>
<td>Monóxido de carbono</td>
</tr>
<tr>
<td>N(_2)O</td>
<td>Monóxido de dinitrógeno</td>
</tr>
<tr>
<td>N(_2)O(_3)</td>
<td>Trióxido de dinitrógeno</td>
</tr>
<tr>
<td>N(_2)O(_5)</td>
<td>Pentaóxido de dinitrógeno</td>
</tr>
</tbody>
</table>

El dióxido de azufre, SO\(_2\), y el dióxido de nitrógeno, NO\(_2\), se encuentran en el aire contaminado y son de los contaminantes más peligrosos para el ser humano. La presencia de éstos y otros óxidos ácidos en la atmósfera, provoca la formación de lluvia ácida y aceleran la oxidación de productos elaborados con hierro.

El monóxido de carbono producido principalmente por la combustión parcial de gasolina en los automóviles, es uno de los mayores contaminantes del aire, capaz de provocar la muerte.

Nomenclatura de oxiácidos

Sin duda, la mayoría de las personas conoce el término ácido. La palabra ácido proviene del latín acidus, que significa agrio. Este término fue utilizado originalmente para referirse al vinagre. Existen dos tipos de ácidos inorgánicos: Los hidrácidos y los oxiácidos.

Los oxiácidos conocidos también por el nombre de oxácidos y oxoácidos, son compuestos covalentes ternarios que resultan de la combinación de un óxido ácido con el agua.

\[
\text{SO}_3 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{SO}_4
\]

Usualmente son reconocidos por sus fórmulas químicas (H\(_n\).XO\(_n\)), que generalmente inician con hidrógeno, seguido del elemento no metálico (o metaloide) y finalmente el oxígeno.

Se les llama oxiácidos porque dentro de su molécula contienen oxígeno. Se pueden clasificar en: monopróticos, dipróticos o polipróticos, dependiendo del número de iones H\(^+\) disponibles o sustituibles en el ácido.
El número de hidrógenos que posee cada ácido, generalmente se puede determinar si se conoce el grupo al que pertenece el elemento no metálico central, al utilizar la siguiente expresión:

\[8 - \text{Número de grupo} = \text{No. de hidrógenos del ácido} \]

Esto sólo se cumple para los elementos del grupo V, VI y VIIA, con excepción de los ácidos del nitrógeno, que sólo llevan un hidrógeno.

<table>
<thead>
<tr>
<th>IIIA</th>
<th>IVA</th>
<th>VA</th>
<th>VIA</th>
<th>VIIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3H</td>
<td>2H</td>
<td>3H</td>
<td>2H</td>
<td>1H</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>N*</td>
<td>O</td>
<td>F</td>
</tr>
<tr>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>Se</td>
<td>Br</td>
<td>Te</td>
<td>I</td>
</tr>
</tbody>
</table>

Tabla 4.9 No metales y metaloides.

Nomenclatura común

La IUPAC recomienda, que la permanencia de nombres tradicionales sea limitado sólo a compuestos muy comunes, que ya tienen nombres establecidos. Sin embargo, la nomenclatura común sigue teniendo un fuerte arraigo. Veamos algunas consideraciones:

Si un elemento forma solamente un oxiácido, éste llevará la terminación ico.

\[\text{H}_2\text{CO}_3 \] ácido carbónico

Cuando un elemento no metálico (o metaloide) presenta dos estados de oxidación, se usa la terminación –oso, para el menor estado de oxidación, e –ico para el mayor.

\[\text{H}_3\text{BO}_2 \] ácido boroso

\[\text{H}_3\text{BO}_3 \] ácido bórico

En caso de que el elemento central presente tres o más estados de oxidación, se utilizarán los prefijos hipo o per según corresponda.
Aplicaciones de los oxiácidos en la vida diaria

El ácido sulfúrico se utiliza en la fabricación de fertilizantes, explosivos, pinturas, así como en la metalurgia.

El ácido fosfórico se utiliza en la fabricación de fertilizantes, detergentes, jabones y para acidular los refrescos de cola.

El ácido nítrico es un ácido fuerte que se utiliza en la fabricación de fertilizantes, explosivos, lacas, fibras sintéticas, drogas, colorantes y además como agente oxidante.

En la vida diaria utilizamos también ácidos orgánicos, como el ácido cítrico, ascórbico (vitamina C), acético y acetilsalicílico. El ácido cítrico como su nombre lo indica, se encuentra presente en frutas como limones, naranjas y toronjas. El ácido acético diluido se conoce como vinagre, el cual se añade para la preparación de chiles en escabeche, ensaladas o aderezos. La vitamina C es el ácido ascórbico.

Precauciones que deben tenerse al utilizar ácidos y bases fuertes

Los ácidos minerales como el sulfúrico, el clorhídrico y el nítrico son muy corrosivos, destruyen los tejidos; al igual que algunas bases como el hidróxido de sodio.

Si de manera accidental cae en tu piel alguna de estas sustancias aplica bastante agua en la zona afectada, con la finalidad de diluir ya sea el ácido o la base. Posteriormente si tratas de neutralizar una base fuerte, se debe emplear un ácido débil como el vinagre o el ácido bórico, H_3BO_3; este último sobre todo si el accidente ha ocurrido en los ojos. Asimismo, para neutralizar la quemadura de un ácido fuerte hay que usar una base débil como la leche de magnesia, Mg(OH)_2 o el bicarbonato de sodio, NaHCO_3.

Esta es una reacción de neutralización: \[\text{ácido} + \text{base} \rightarrow \text{sal} + \text{agua} \]

Una precaución que siempre deberás tener presente:

¡Nunca le des de “beber” agua al ácido!

 Esto significa que no debe agregarse agua al ácido porque al caer ésta se calienta y evapora violentamente, pudiendo salpicar partes de tu cuerpo. Por ello, lo que debe hacerse para preparar una disolución ácida, es añadir lentamente el ácido al agua.
Hidrácidos
Los hidrácidos son generalmente compuestos binarios que resultan de la combinación del hidrógeno con los no metales de los grupos VIA(16) y VIIA(17). Sin embargo, existen hidrácidos ternarios, como el ácido cianhídrico o cianuro de hidrógeno, HCN. La reacción de formación de un hidrácido pertenece a las reacciones de síntesis o combinación directa.

\[
H_2(g) + Cl_2(g) \rightarrow 2 \text{HCl}(g)
\]

Éstos se caracterizan porque al reaccionar con una base o metal dan lugar a las sales haloideas. Ejemplo:

\[
\text{HCl}(ac) + \text{NaOH}(ac) \rightarrow \text{NaCl}(ac) + \text{H}_2\text{O}(l)
\]

Nomenclatura de hidrácidos

Tradicionalmente a los hidrácidos se les nombra con la terminación \text{hídrico}, ya que al disolverse en agua forman disoluciones ácidas, debido a esa propiedad a estos compuestos se les da el nombre con el \text{sufijo hídrico}. Pero cuando son gaseosos, se les nombra con la terminación \text{uro}.

Por ejemplo, el HCl es un gas que se llama \text{cloruro de hidrógeno}, y a su disolución acuosa se le conoce como \text{ácido clorhídrico}.

Para expresar la fórmula de un ácido binario se acostumbra escribir primero el símbolo del hidrógeno, HCl, sin importar si están o no disueltos en agua.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>HCl</th>
<th>H\textsubscript{2}S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre tradicional</td>
<td>Ñcido clorhídrico</td>
<td>Ñcido sulfhídrico</td>
</tr>
<tr>
<td>Nombre actual</td>
<td>Cloruro de hidrógeno</td>
<td>Sulfuro de hidrógeno</td>
</tr>
</tbody>
</table>

Los ácidos son sustancias que liberan iones hidrógeno, H+, al disolverse en agua. Se usa con frecuencia la misma fórmula para expresar los compuestos binarios de hidrógeno, como HCl, sin importar si están o no disueltos en agua.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>Nombre del ácido</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>Ácido fluorhídrico</td>
</tr>
<tr>
<td>HCl</td>
<td>Ácido clorhídrico</td>
</tr>
<tr>
<td>HBr</td>
<td>Ácido bromhídrico</td>
</tr>
<tr>
<td>HI</td>
<td>Ácido yodhídrico</td>
</tr>
<tr>
<td>H\textsubscript{2}S</td>
<td>Ácido sulfhídrico</td>
</tr>
<tr>
<td>H\textsubscript{2}Se</td>
<td>Ácido selenhídrico</td>
</tr>
<tr>
<td>H\textsubscript{2}Te</td>
<td>Ácido telurhídrico</td>
</tr>
</tbody>
</table>

Tabla 4.10 Los hidrácidos de los grupos VIIA y VIA.
Hidruros covalentes

Los hidruros covalentes moleculares se forman por la unión del hidrógeno con los elementos de los grupos 13 al 17, en condiciones adecuadas, exceptuando al aluminio que forma hidruros poliméricos, (AlH₃)n, el bismuto y el polonio.

El estado físico de los hidruros covalentes moleculares es variable, algunos pueden ser gases (NH₃, CH₄, H₂S), otros líquidos (H₂O, C₆H₆) y generalmente presentan estructuras sencillas. Sin embargo, el borano, BH₃, se dimeriza para formar B₂H₆.

Fig.4.36 La dimerización del borano.
3. Procesamiento de la información

Actividad 4.21

En forma colaborativa elabora un mapa conceptual que rescate en gran medida los conceptos centrales acerca de los compuestos covalentes (óxidos ácidos o anhídridos, oxiácido, hidrácidos e hidruros covalentes, su nomenclatura y ejemplos de cada uno de ellos.

```
Sustancias covalentes

como

Óxidos ácidos
Oxiácidos
Hidrácidos
Hidruros covalentes
```
4. Aplicación de la información

Actividad 4.22

En forma colaborativa resuelva los siguientes cuestionamientos.

1. Aplica la información proporcionada sobre nomenclatura de sustancias covalentes y completa la siguiente tabla escribiendo el nombre y fórmula de los compuestos del nitrógeno.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>N. común</th>
<th>N. de Stock</th>
<th>N. descriptiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Anhídrido hiponitroso</td>
<td>Óxido de nitrógeno (I)</td>
<td>Monóxido de dinitrógeno</td>
</tr>
<tr>
<td>NO₂</td>
<td>Anhídrido nítrico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO₃</td>
<td>Óxido de nitrógeno (III)</td>
<td></td>
<td>Dióxido de nitrógeno</td>
</tr>
</tbody>
</table>

2. Completa la tabla escribiendo el nombre común y sistemático de los siguientes compuestos que resultan de combinar a los no metales o metaloides con el oxígeno.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>N. Común</th>
<th>N. Descriptiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₂O</td>
<td>Anhídrido hipofosforoso</td>
<td>Trióxido de difósforo</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>Anhídrido hipoarsenoso</td>
<td></td>
</tr>
<tr>
<td>As₂O₃</td>
<td>Trióxido de diarsénico</td>
<td></td>
</tr>
<tr>
<td>As₂O₅</td>
<td>Anhídrido arsénico</td>
<td></td>
</tr>
<tr>
<td>TeO</td>
<td>Anhídrido sulfuroso</td>
<td></td>
</tr>
<tr>
<td>Cl₂O</td>
<td>Anhídrido telúrico</td>
<td></td>
</tr>
<tr>
<td>Cl₂O₃</td>
<td>Anhídrido cloroso</td>
<td></td>
</tr>
<tr>
<td>Cl₂O₅</td>
<td>Heptaóxido de dicloro</td>
<td></td>
</tr>
<tr>
<td>Br₂O</td>
<td>Anhídrido brómico</td>
<td></td>
</tr>
<tr>
<td>Br₂O₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₂O</td>
<td>Monóxido de diyodo</td>
<td></td>
</tr>
<tr>
<td>I₂O₃</td>
<td>Pentaóxido de diyodo</td>
<td></td>
</tr>
<tr>
<td>I₂O₇</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Escriba el nombre de los siguientes oxidos ácidos utilizando para ello, la nomenclatura que considere más pertinente.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>Nombre</th>
<th>Usos</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂O₃</td>
<td>Se usó como anestésico.</td>
<td></td>
</tr>
<tr>
<td>SO₂</td>
<td>Como desinfectante y preservativo en la industria alimentaria. Como agente blanqueador en textiles, papel, aceite, etc. Como fumigante.</td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>En la obtención del silicio y sus compuestos. En la fabricación de vidrio y abrasivos.</td>
<td></td>
</tr>
<tr>
<td>TeO₂</td>
<td>Se usa para colorear el vidrio.</td>
<td></td>
</tr>
<tr>
<td>As₄O₆</td>
<td>En la fabricación de vidrio. Como insecticida y eliminación de roedores. Como preservativo de la madera.</td>
<td></td>
</tr>
<tr>
<td>P₄O₁₀</td>
<td>Como agente deshidratante.</td>
<td></td>
</tr>
<tr>
<td>B₂O₃</td>
<td>Se usa en la fabricación de vidrio resistente al calor (pyrex) y telas incombustibles.</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>Como combustible, agente reductor y en la síntesis del metanol.</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>Como refrigerante, en la elaboración de bebidas carbonatadas y como extinguidor de fuego.</td>
<td></td>
</tr>
<tr>
<td>SeO₂</td>
<td>Como antioxidante en la fabricación de aceites.</td>
<td></td>
</tr>
</tbody>
</table>

4. Completa la tabla, según corresponda, con las fórmulas o nombres comunes de algunos oxiácidos y oxianiones(radicales), teniendo en cuenta que en los radicales las terminaciones oso e ico cambian por ito y ato.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>Nombre del ácido</th>
<th>Radical</th>
<th>Nombre del radical</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBrO</td>
<td>Ácido hipobromoso</td>
<td>BrO⁻</td>
<td>Hipobromito</td>
</tr>
<tr>
<td></td>
<td>Ácido brómico</td>
<td>BrO₃⁻</td>
<td></td>
</tr>
<tr>
<td>H₃PO₄</td>
<td>Ácido fosforoso</td>
<td>PO₃⁻</td>
<td>Fosfato</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>Ácido nítrico</td>
<td>NO₃⁻</td>
<td></td>
</tr>
<tr>
<td>H₂SO₃</td>
<td>Ácido bórico</td>
<td>SO₃²⁻</td>
<td></td>
</tr>
<tr>
<td>HClO</td>
<td>Hipoclorito</td>
<td>ClO⁻</td>
<td></td>
</tr>
<tr>
<td>HIO</td>
<td>Ácido nitroso</td>
<td>IO⁻</td>
<td>Nitrito</td>
</tr>
<tr>
<td>HIO₄</td>
<td>Ácido carbónico</td>
<td>IO₄⁻</td>
<td>Carbonato</td>
</tr>
<tr>
<td>H₂SiO₃</td>
<td>Ácido yódico</td>
<td>SiO₃²⁻</td>
<td>Yodato</td>
</tr>
<tr>
<td>HIO</td>
<td>Ácido perchlorico</td>
<td>IO⁻</td>
<td>Perclorato</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AsO₄⁻</td>
<td></td>
</tr>
</tbody>
</table>
5. Completa la tabla con los nombres que reciben los siguientes hidrácidos en estado gaseoso.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>Nombre</th>
<th>Usos</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td></td>
<td>Como catalizador en la industria petrolera. En la fabricación de compuestos de uranio y en el grabado de vidrio.</td>
</tr>
<tr>
<td>HCl</td>
<td></td>
<td>En la metalurgia, en la refinación de minerales. Como limpiador de metales en el galvanizado. Está presente en el ácido estomacal (digestivo).</td>
</tr>
<tr>
<td>HCN</td>
<td></td>
<td>Es utilizado como gas letal en las cámaras de gases de los Estados Unidos.</td>
</tr>
</tbody>
</table>

6. Completa la tabla con los nombres de los siguientes hidruros covalentes.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄</td>
<td></td>
</tr>
<tr>
<td>SiH₄</td>
<td>Silano</td>
</tr>
<tr>
<td>NH₃</td>
<td></td>
</tr>
<tr>
<td>PH₃</td>
<td></td>
</tr>
<tr>
<td>AsH₃</td>
<td>Arsina</td>
</tr>
<tr>
<td>H₂O</td>
<td></td>
</tr>
<tr>
<td>GeH₄</td>
<td></td>
</tr>
</tbody>
</table>
5. Autoevaluación

Actividad 4.23

Elabora un escrito donde reflexiones acerca los beneficios y riesgos que pueden oca-

sionar al ambiente, el uso de algunas sustancias covalentes.
Elabora tu proyecto: comunica tus resultados.

- En esta última etapa o fase, los estudiantes describen su proyecto de investigación ante sus compañeros ya sea a través de una presentación en power point, en el periódico mural o a través de trípticos.
- Los estudiantes analizan los resultados obtenidos y son capaces de comunicar sus conclusiones.
- Al finalizar su trabajo valora la importancia de realizar pequeñas investigaciones que ayuden al desarrollo de las competencias científicas a temprana edad.

El proyecto de investigación debe ser considerado como un producto integrador de los aprendizajes del curso de química general.

Rúbrica para evaluar tu proyecto

<table>
<thead>
<tr>
<th>Criterios</th>
<th>4 Excelente</th>
<th>3 Bueno</th>
<th>2 Suficiente</th>
<th>1 No suficiente</th>
<th>Puntaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentación del proyecto</td>
<td>El proyecto contiene portada, introducción, objetivo, desarrollo y conclusiones.</td>
<td>El proyecto no contiene portada pero incluye una introducción, objetivos, desarrollo y conclusiones.</td>
<td>El proyecto no contiene portada ni objetivos, pero incluye una introducción, desarrollo y conclusiones.</td>
<td>El proyecto no presenta una estructura clara.</td>
<td></td>
</tr>
<tr>
<td>Redacción</td>
<td>No hay errores de gramática, ortografía o puntuación.</td>
<td>Casi no hay errores de gramática, ortografía o puntuación.</td>
<td>Unos pocos errores de gramática, ortografía o puntuación.</td>
<td>Muchos errores de gramática, ortografía o puntuación.</td>
<td></td>
</tr>
<tr>
<td>Organización</td>
<td>La información está muy bien organizada con párrafos bien redactados y con subtítulos.</td>
<td>La información está organizada con párrafos bien redactados.</td>
<td>La información está organizada, pero los párrafos no están bien redactados.</td>
<td>La información proporcionada no parece estar organizada.</td>
<td></td>
</tr>
<tr>
<td>Fuentes</td>
<td>Todas las fuentes de información están documentadas y en el formato deseado.</td>
<td>Todas las fuentes de información están documentadas, pero unas pocas no están en el formato deseado.</td>
<td>Todas las fuentes de información están documentadas, pero muchas no están en el formato deseado.</td>
<td>Algunas fuentes de información no están documentadas.</td>
<td></td>
</tr>
<tr>
<td>Comunicación</td>
<td>El equipo logra comunicar en forma clara y precisa los resultados de su trabajo.</td>
<td>El equipo logra comunicar los resultados de su trabajo, pero no en forma clara.</td>
<td>El equipo logra comunicar los resultados de su trabajo, pero muestra desorganización.</td>
<td>El equipo no logra comunicar en forma clara y precisa los resultados de su trabajo.</td>
<td></td>
</tr>
</tbody>
</table>
ACTIVIDAD EXPERIMENTAL 8
Conductividad eléctrica en las disoluciones

Competencia a desarrollar:

• Clasifica sustancias iónicas y covalentes, al hacer uso de la conductividad eléctrica como medio para identificar su tipo de enlace químico.

Actividades previas

Investigar en diferentes fuentes, los siguientes conceptos; enlace iónico, enlace covalente, enlace covalente polar, enlace covalente no polar, disolución, electrolito.

1. Preguntas problematizadoras

La conductividad eléctrica es una propiedad que permite identificar y clasificar a las sustancias por su tipo de enlace químico. Las sustancias iónicas y las sustancias covalentes polares conducen la corriente eléctrica, pero las sustancias covalentes no polares no la conducen. Un estudiante construyó un aparato al que denominó conductímetro y con él pudo identificar qué sustancias o disoluciones conducían la corriente eléctrica. Te invitamos a que tu equipo construya el suyo, los materiales se muestran en las figuras de abajo.

¿Cuáles de las siguientes sustancias y disoluciones de sustancias, conducirán la corriente eléctrica: agua destilada, agua de la llave, disolución acuosa de cloruro de sodio, sulfato de cobre en disolución, etanol, sal sólida, azúcar sólida, parafina, salsa de soya, harina?

2. Elabora tus hipótesis

Para cada una de las sustancias y disoluciones, elabora una hipótesis relacionando conductividad eléctrica con el tipo de enlace químico.

<table>
<thead>
<tr>
<th>Cuerpo material</th>
<th>Hipótesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua destilada</td>
<td></td>
</tr>
<tr>
<td>Agua de la llave</td>
<td></td>
</tr>
<tr>
<td>Disolución acuosa de cloruro de sodio</td>
<td></td>
</tr>
</tbody>
</table>
1. Hipótesis

<table>
<thead>
<tr>
<th>Cuerpo material</th>
<th>Hipótesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disolución de sulfato de cobre</td>
<td></td>
</tr>
<tr>
<td>Alcohol</td>
<td></td>
</tr>
<tr>
<td>Sal sólida</td>
<td></td>
</tr>
<tr>
<td>Azúcar</td>
<td></td>
</tr>
<tr>
<td>Parafina</td>
<td></td>
</tr>
<tr>
<td>Salsa de soya</td>
<td></td>
</tr>
<tr>
<td>Harina</td>
<td></td>
</tr>
</tbody>
</table>

¿Qué materiales y sustancias utilizarás para llevar a cabo el experimento?

2. Materiales y sustancias

3. Observaciones y registro de datos.

<table>
<thead>
<tr>
<th>Cuerpo material</th>
<th>¿Conduce la corriente eléctrica?</th>
<th>Tipo de enlace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua destilada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agua de la llave</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disolución acuosa de cloruro de sodio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disolución de sulfato de cobre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sal sólida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azúcar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parafina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salsa de soya</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harina</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Resultados.
¿Se confirmaron tus hipótesis? Argumenta tu respuesta.
__
__
__

¿Qué problemas encontraste en el desarrollo de tu experimento? ¿Cómo los resolviste?
__
__
__

6. Conclusiones
ANEXOS
Aspectos generales para el trabajo en el laboratorio

El trabajo experimental es una fuente importante de conocimiento, ya que implica problematizar, adquirir, procesar y aplicar la información, como medio de desarrollo de habilidades procedimentales y cognitivas, mismas que favorecen la formación de hábitos propios del espíritu científico.

En el laboratorio, se promueve el desarrollo de las siguientes competencias disciplinares del campo de las ciencias experimentales:

1. Obtiene, registra y sistematiza la información para responder a preguntas de carácter científico, consultando fuentes relevantes y realizando experimentos pertinentes.
2. Contrasta los resultados obtenidos en una investigación o experimento con hipótesis previas y comunica sus conclusiones.
3. Valora las preconcepciones personales o comunes sobre diversos fenómenos naturales a partir de evidencias científicas.

Reglas de higiene y seguridad

La seguridad dentro del laboratorio es una de nuestras principales preocupaciones. Por ello, deberán tomarse en cuenta las siguientes disposiciones.

El laboratorio de química es un espacio donde se deben realizar trabajos con responsabilidad. Algunas de las reglas que deberás tomar en cuenta:

- Usar siempre bata, que te proteja de salpicaduras o derrames de sustancias tóxicas y corrosivas.
- Eliminar de la zona de trabajo artículos personales.
- Mantener el área de trabajo perfectamente limpia.
- Tener cuidado con el mechero, por la presencia de sustancias inflamables.
- Evitar ingerir alimentos y bebidas.
- No oler, ni probar las sustancias (si necesita oler abanique los gases con la mano).
- Leer etiquetas antes de usar los reactivos o sustancias.
- Realizar el experimento siguiendo el orden planeado.
- Calentar lentamente materiales de vidrio.
- Si calienta un líquido en un tubo de ensaye. Nunca orientar la boca del tubo hacia uno mismo o hacia un compañero.
- Nunca verter agua sobre ácidos concentrados, siempre agregar lentamente el ácido sobre el agua al mezclar.
- Si se desprenden gases durante un experimento, deberá realizarse bajo una campana de extracción o áreas ventiladas.
• Verter las sustancias altamente contaminantes en un contenedor. Si la sustancia es ácida o básica, deberá ser neutralizada antes de ser vertida al drenaje y dejar correr agua para diluir.
• Al término de la práctica lavar el material que se utilizó.

A manera de prevención, tenga a la mano y en buenas condiciones, para su uso inmediato, un botiquín con lo siguiente:

• Ácido acético al 2% o vinagre diluido 1:2 en agua.
• Ácido Bórico al 1%
• Hidróxido de aluminio en gel o tabletas
• Solución de bicarbonato de sodio al 5%
• Carbón activado,
• Sulfato de magnesio (sal de Epsom)
• Petrolato líquido
• Sal común
• Leche en polvo
• Cobija (puede ser usada)
• Antídoto universal (mezcla de carbón activado, leche de magnesia y ácido tánico).

Los primeros auxilios en el laboratorio

Debes conocer:
• Las técnicas de seguridad para el laboratorio.
• Dónde y cómo informar todo accidente, daño, lesión o derrame.
• El lugar donde está el equipo de los primeros auxilios.
• El teléfono.
• La oficina de la enfermería de la escuela.
• Los procedimientos para evacuar el laboratorio y/o la escuela.

<table>
<thead>
<tr>
<th>Situación crítica</th>
<th>Respuesta emergente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quemaduras leves</td>
<td>Sumergir la parte afectada en agua fría para evitar el dolor</td>
</tr>
<tr>
<td>Heridas o contusiones</td>
<td>Sigue las instrucciones incluidas en tu equipo de primeros auxilios que deberás tener en el laboratorio</td>
</tr>
<tr>
<td>Desmayos o colapsos</td>
<td>Lleva a la persona donde haya aire fresco; haz que se acueste de manera que su cabeza esté más baja que su cuerpo; si es necesario, dales respiración artificial</td>
</tr>
<tr>
<td>Fuego y quemaduras</td>
<td>Apaga todas las llamas y los mecheros de gas; envuelve a la persona en una frazada protectora contra el fuego; usa el extinguidor de incendios para apagar el fuego. No debes usar agua para extinguir un fuego, porque el agua puede reaccionar con las sustancias que están encendidas y puedes intensificar el fuego, en vez de apagarlo. En quemaduras de 1° y 2° grado no abiertas, aplique compresas de agua fría. En heridas y quemaduras de 3° grado lleve de inmediato al paciente al hospital más cercano. No use ungüentos.</td>
</tr>
</tbody>
</table>
En caso de que las llamas envuelvan a una persona, cúbrala con una cobija y hágala rodar, si la ropa se ha adherido a la piel no intente desprenderla. En caso de quemaduras con sustancias químicas, deje correr abundante agua durante 15 minutos, lave con jabón la parte contaminada. Usa bicarbonato de sodio (NaHCO₃) para accidentes con ácidos fuertes.

Materiales extraños en los ojos
- Lava los ojos con mucha agua o usa la botella de lavado para ojos.

Intoxicación
- Aleje al intoxicado del agente venenoso, acuéstelo bocabajo, voltee la cabeza hacia un lado, y jale su lengua hacia fuera.
- Obtenga atención médica lo antes posible.
- Si la intoxicación es por la boca, debe tomar de 2 a 4 vasos de agua o inmediatamente induzca el vómito, insista hasta que el líquido expulsado esté limpio, trate de identificar el veneno para poder administrar el antídoto adecuado o el antídoto universal.
- Si el daño es ocasionado en los ojos por salpicadura, lave con abundante agua (tibia si es posible) mantenga los párpados abiertos, deje correr el agua en la parte interna del ojo hacia el exterior, cubra con gasa estéril y solicite atención médica. Si el problema lo ocasiona un cuerpo sólido, no intente retirarlo, cubra el ojo y llévele al hospital.

Sangrado severo
- Aplica presión o una compresa directamente a la herida y consigue un médico inmediatamente.

Derrames y quemaduras con ácidos y bases
- Lava el área con mucho agua: usa la ducha de seguridad.

Propuestas para evaluar la actividad experimental

Los resultados experimentales deberán ser reportados; por tanto, estos serán claros y precisos, de acuerdo con las instrucciones del profesor, o los registrados en el protocolo de prácticas.

En forma general los pasos a seguir son: Lectura del manual de prácticas, lectura de material adicional, formulaciones de hipótesis, explicación y/o discusión durante la realización de la práctica, realización de la práctica, discusión de resultados, informe personal o de grupo.

Elementos a considerar en el reporte de la actividad experimental

Hoja de presentación, las competencias a desarrollar, el problema a resolver, las actividades previas, las hipótesis, introducción, diseño del experimento, lista de materiales y sustancias, procedimiento y las conclusiones.

La hoja de presentación debe contener los siguientes elementos:

Nombre de la institución, nombre de la unidad académica, nombre del laboratorio, número de la práctica, título de la práctica, nombre de los integrantes del equipo que reporta en orden alfabético, grado, grupo, turno, así como lugar y fecha.
Rúbrica para evaluar los productos de la actividad experimental

Nombre del alumno: __

<table>
<thead>
<tr>
<th>Criterios</th>
<th>4 Excelente</th>
<th>3 Bueno</th>
<th>2 Suficiente</th>
<th>1 Insuficiente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portada</td>
<td>Todos los elementos requeridos están presentes.</td>
<td>Un elemento requerido no está presente.</td>
<td>Dos elementos requeridos están omitidos.</td>
<td>Varios elementos requeridos han sido omitidos.</td>
</tr>
<tr>
<td>Competencia (s)</td>
<td>La(s) competencia (s) está(n) claramente identificada(s) y presentada(s).</td>
<td>La(s) competencia (s) está(n) identificada(s), pero no son presentada(s) en una manera que no es muy clara.</td>
<td>La(s) competencia (s) está(n) parcialmente identificada(s) y es presentada en una manera que no es muy clara.</td>
<td>La(s) competencia (s) es erróneo o irrelevante.</td>
</tr>
<tr>
<td>Hipótesis experimental</td>
<td>La relación postulada entre las variables y los resultados anticipados es clara y razonable basada en lo que ha sido estudiado.</td>
<td>La relación postulada entre las variables y los resultados anticipados está razonablemente basada en el conocimiento general y en observaciones.</td>
<td>La relación postulada entre las variables y los resultados anticipados ha sido expuesta, pero aparenta estar basada en una lógica defectuosa.</td>
<td>No se propuso una hipótesis.</td>
</tr>
<tr>
<td>Materiales</td>
<td>Todos los materiales usados en el experimento son descritos de manera clara y precisa.</td>
<td>Casi todos los materiales usados en el experimento son descritos de manera clara y precisa.</td>
<td>La mayoría de los materiales usados en el experimento están descritos con precisión.</td>
<td>Muchos materiales están descritos sin precisión o no están del todo descritos.</td>
</tr>
<tr>
<td>Procedimientos</td>
<td>Los procedimientos están enlistados con pasos claros.</td>
<td>Los procedimientos están enlistados en un orden lógico, pero los pasos no están enumerados.</td>
<td>Los procedimientos están enlistados, pero no están en un orden lógico o son difíciles de seguir.</td>
<td>Los procedimientos no enlistan en forma precisa todos los pasos del experimento.</td>
</tr>
<tr>
<td>Conclusión</td>
<td>La conclusión incluye los descubrimientos que apoyan la hipótesis, posibles fuentes de error y lo que se aprendió del experimento.</td>
<td>La conclusión incluye los descubrimientos que apoyan la hipótesis y lo que se aprendió del experimento.</td>
<td>La conclusión incluye lo que fue aprendido del experimento.</td>
<td>No hay conclusión incluida en el informe.</td>
</tr>
<tr>
<td>Ortografía, puntuación y gramática</td>
<td>Sólo presenta uno o dos errores de ortografía, puntuación y gramática en el reporte.</td>
<td>Presenta tres errores de ortografía, puntuación y gramática en el reporte.</td>
<td>Presenta cuatro errores de ortografía, puntuación y gramática en el reporte.</td>
<td>Presenta más de 4 errores de ortografía, puntuación y gramática en el reporte.</td>
</tr>
</tbody>
</table>
Bibliografía

Bentor, Yinon. Chemical Element .com >>http:/ www. chemicalelements.com/

Enciclopedia Encarta 2002/CNRI/Sciencie Source/ Photo Researchers,Inc.

Manual para el maestro. México. ITESO.

Marzano, R.J. y Pickering, D. J. (1999) Dimensiones del aprendizaje

Timberlake, K. C. (1997). Química introducción a la química general a la orgánica y a la bioquímica. Quinta edición, México. Oxford University Press Harla,

Páginas electrónicas consultadas:

http://www.cneq.unam.mx/material_didactico/material_didactico.html
http://es.wikipedia.org/wiki/Mapa_conceptual
http://members.tripod.com/plinios/materiales.htm
http://www.sindominio.net/aluned/estudios/Mapas.html
http://tochtli.fisica.uson.mx/fluidos%20y%20calor/Novedades/Quinto%20Estado.htm
http://www.fq.profes.net/archivo2.asp?id_contenido=38122
http://www.cas.org/cgi-bin/regreport.pl
http://www.landsil.com/Fisica/Materia1.htm
http://www.visionlearning.com/library/module_viewer.php?mid=57&l=s
http://www.fq.uh.cu/dpto/qi/nestor/enlace_web/solidos_web/solidos_web/solidos_mole-
culares.htm
http://newton.cnice.mec.es/1eso/materia/elementos2.html
http://rubistar.4teachers.org

Créditos de fotografías utilizadas en el libro:

http://clipart.com.es
www.fq.uh.cu/webeco/sulfato_cobre.htm
www.asturnatura.com/azufre
http://madpeople07.blogspot.com/clorox
http://www.prof.uniandes.edu.co/~infquimi/ANALISIS/espectrofotometria/especfigu-
ras.htm
www.genciencia.com/images/Nitrogeno_liquido.jpg
www.windows.ucar.edu
http://es.wikipedia.org/wiki/Ox%C3%ADgeno
http://www.insa-col.org/sites/url/Camilo/Im%E1genes/Resonancia%20Magn%E9tica.jpg
www.alfonzorivas.com/imgproduct/vinaagreta.jpg
http://es.wikipedia.org/wiki/Arqu%C3%ADmedes
Grans/chalita.htm
http://www.intek-uk.com/SiliconePCB_WEBwhite.jpg
QUÍMICA GENERAL, un enfoque en competencias, se terminó de imprimir en el mes de febrero de 2012 en los talleres gráficos de SERVICIOS EDITORIALES ONCE RÍOS, Río Usumacinta No. 821, Col. Industrial Bravo, Tel. 712-29-50. Culiacán, Sinaloa.

La edición consta de 19,000 ejemplares.